PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (3) Apr. 2024 / JST-4643-2023

 

Effect of Bimetallic Co-Cu/Dolomite Catalyst on Glycerol Conversion to 1,2-Propanediol

Norsahida Azri, Ramli Irmawati, Usman Idris Nda-Umar, Mohd Izham Saiman, Yun Hin Taufiq-Yap and Ghassan Abdulkareem-Alsultan

Pertanika Journal of Science & Technology, Volume 32, Issue 3, April 2024

DOI: https://doi.org/10.47836/pjst.32.3.09

Keywords: Cobalt, copper, dolomite support, acidity, glycerol hydrogenolysis, 1,2-propanediol

Published on: 24 April 2024

This present study examines the efficacy of using dolomite (Dol, CaMg(CO3)2)-supported copper (Cu) and cobalt (Co) bimetallic and monometallic catalysts for the hydrogenolysis of glycerol to propylene glycol (PG; 1,2-PDO). The proposed catalysts were generated using the impregnation process before they were calcined at 500°C and reduced at 600°C. Advanced analytical techniques namely Brunauer, Emmett, and Teller (BET) method; the Barrett, Joyner, and Halenda (BJH) method; temperature-programmed desorption of ammonia (NH3–TPD), hydrogen-temperature programmed reduction (H2-TPR), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) were then used to characterise the synthesised catalysts, whose performance was then tested in the hydrogenolysis of glycerol. Of all the synthesised catalysts tested in the hydrogenolysis process, the Co-Cu/Dol bimetallic catalyst performed best, with an 80.3% glycerol conversion and 85.9% PG selectivity at a pressure of 4 MPa, a temperature of 200°C, and a reaction time of 10 hours. Its high catalytic performance was attributed to effective interactions between its Co-Cu-Dol species, which resulted in acceptable acidity, good reducibility of metal oxide species at low temperatures, larger surface area (15.3 m2 g-1), large-sized particles, fewer pores (0.032 cm3 g-1), and smaller pore diameter (0.615 nm).

  • Asikin-Mijan, N., Lee, H. V., Juan, J. C., Noorsaadah, A. R., & Taufiq-Yap, Y. H. (2017). Catalytic deoxygenation of triglycerides to green diesel over modified CaO-based catalysts. RSC Advances, 7(73), 46445-46460. https://doi.org/10.1039/C7RA08061A

  • Azri, N., Ramli, I., Nda-Umar, U. I., Shamsuddin, M. Razali., Saiman, M. I., & Taufiq-Yap, Y. H. (2020). Copper-dolomite as effective catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of the Taiwan Institute of Chemical Engineers, 112, 34-51. https://doi.org/10.1016/j.jtice.2020.07.011

  • Bagheri, S., Muhd, N., & Yehye, W. A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113-127. https://doi.org/10.1016/j.rser.2014.08.031

  • Feng, Y., Yin, H., Wang, A., Shen, L., Yu, L., & Jiang, T. (2011). Gas phase hydrogenolysis of glycerol catalyzed by Cu/ZnO/MOx (MOx = Al2O3, TiO2, and ZrO2) catalysts. Chemical Engineering Journal, 168(1), 403–412. https://doi.org/10.1016/j.cej.2011.01.049

  • Freitas, I. C., Manfro, R. L., & Souza, M. M. V. M. (2018). Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B: Environmental, 220, 31–41. https://doi.org/10.1016/j.apcatb.2017.08.030

  • Gallegos-Suarez, E., Guerrero-Ruiz, A., Rodriguez-Ramos, I., & Arcoya, A. (2015). Comparative study of the hydrogenolysis of glycerol over Ru-based catalysts supported on activated carbon, graphite, carbon nanotubes and KL-zeolite. Chemical Engineering Journal, 262, 326–333. https://doi.org/10.1016/j.cej.2014.09.121

  • Gandarias, I., Requies, J., Arias, P. L., Armbruster, U., & Martin, A. (2012). Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. Journal of Catalysis, 290, 79–89. https://doi.org/10.1016/j.jcat.2012.03.004

  • Guo, X., Li, Y., Shi, R., Liu, Q., Zhan, E., & Shen, W. (2009). Co/MgO catalysts for hydrogenolysis of glycerol to 1, 2-propanediol. Applied Catalysis A: General, 371(1-2), 108–113. https://doi.org/10.1016/j.apcata.2009.09.037

  • Jiang, T., Kong, D., Xu, K., & Cao, F. (2016). Hydrogenolysis of glycerol aqueous solution to glycols over Ni–Co bimetallic catalyst: Effect of ceria promoting. Applied Petrochemical Research, 6, 135–144. https://doi.org/10.1007/s13203-015-0128-8

  • Karelovic, A., & Ruiz, P. (2015). The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catalysis Science & Technology, 5(2), 869–881. https://doi.org/10.1039/C4CY00848K

  • Kovanda, F., Jiratova, K., Rymes, J., & Kolousek, D. (2001). Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Applied Clay Science, 18(1-2), 71-80. https://doi.org/10.1016/S0169-1317(00)00032-6

  • Li, Y., Guo, Y., & Xue, B. (2009). Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia. Fuel Processing Technology, 90(5), 652-656. https://doi.org/10.1016/j.fuproc.2008.12.002

  • Liu, Y., Guo, X., Rempel, G. L., & Ng, F. T. T. (2019). The promoting effect of Ni on glycerol hydrogenolysis to 1,2­propanediol with in situ hydrogen from methanol steam reforming using a Cu/ZnO/Al2O3 catalyst. Catalysts, 9(5), Article 412. https://doi.org/10.3390/catal9050412

  • Luna, F. M. T., Cecilia, J. A., Saboya, R. M. A., Barrera, D., Sapag, K., Rodríguez-Castellón, E., & Jr, C. C. L. (2018). Natural and modified montmorillonite clays as catalysts for synthesis of biolubricants. Materials, 11(9), Article 1764. https://doi.org/10.3390/ma11091764

  • Lopez, A., Aragon, J. A., Hernandez-Cortez, J. G., Mosqueira, M. L., & Martinez-Palou, R. (2019). Study of hydrotalcite-supported transition metals as catalysts for crude glycerol hydrogenolysis. Molecular Catalysis, 468, 9–18. https://doi.org/10.1016/j.mcat.2019.02.008

  • Mallesham, B., Sudarsanam, P., Reddy, B. V. S., & Reddy, B. M. (2016). Development of cerium promoted copper–magnesium catalysts for biomass valorization: Selective hydrogenolysis of bioglycerol. Applied Catalysis B: Environmental, 181, 47–57. https://doi.org/10.1016/j.apcatb.2015.07.037

  • Nagaraja, B. M., Padmasri, A. H., Seetharamulu, P., Reddy, K. H. P., Raju, B. D., & Rao, K. R. (2007). A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route-Combination of furfural hydrogenation and cyclohexanol dehydrogenation. Journal of Molecular Catalysis A: Chemical, 278(1-2), 29-37. https://doi.org/10.1016/j.molcata.2007.07.045

  • Pandhare, N. N.,Pudi, S. M., Biswas, P., & Sinha, S. (2016). Vapor phase hydrogenolysis of glycerol to 1, 2-propanediol over γ-Al2O3 supported copper or nickel monometallic and copper–nickel bimetallic catalysts. Journal of the Taiwan Institute of Chemical Engineers, 61, 90–96. https://doi.org/10.1016/j.jtice.2015.12.028

  • Pardeshi, S. K., & Pawar, R. Y. (2010). Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe2O4 complex oxide catalyst. Materials Research Bulletin, 45(5), 609-615. https://doi.org/10.1016/j.materresbull.2010.01.011

  • Priya, S. S., Selvakannana, Komandur, P. R., Chary, V. R., Kantam, M. L., & Bhargava, S. K. (2017). Solvent-free microwave-assisted synthesis of solketal from glycerolusing transition metal ions promoted mordenite solid acid catalysts. Molecular Catalysis, 434, 184–193. https://doi.org/10.1016/j.mcat.2017.03.001

  • Pudi, S. M., Biswas, P., Kumar, S., & Sarkar, B. (2015). Selective hydrogenolysis of glycerol to 1,2 propanediol over bimetallic Cu-Ni catalysts supported on γ-Al2O3. Journal of the Brazilian Chemical Society, 26(8), 1551–1564. https://doi.org/10.5935/0103-5053.20150123

  • Putrakumar, B., Nagaraju, N., Kumar, V. P., & Chary, K. V. R. (2015). Hydrogenation of levulinic acid to valerolactone over copper catalysts supported on Al2O3. Catalysis Today, 250, 209–217. https://doi.org/10.1016/j.cattod.2014.07.014

  • Rajkhowa, T., Marin, G. B., & Thybaut. J. W. (2017). A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Applied Catalysis B: Environmental, 205, 469– 480. https://doi.org/10.1016/j.apcatb.2016.12.042

  • Shozi, M. L., Dasireddy, V. D. B. C., Singh, S., Mohlala, P., Morgan, D. J., Iqbal, S., & Friedrich, H. B. (2017). An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions. Sustainable Energy & Fuels, 1(6), 1437–1445. https://doi.org/10.1039/C7SE00199A

  • Soares, A. V., Perez, G., & Passos, F. B. (2016). Alumina supported bimetallic Pt–Fe catalysts applied to glycerol hydrogenolysis and aqueous phase reforming. Applied Catalysis B: Environmental, 185, 77–87. https://doi.org/10.1016/j.apcatb.2015.11.003

  • Soares, A. V. H., Salazar, J. B., Falcone, D. D., Vasconcellos, F. A., Davis, R. J., & Passos, F. B. (2016). A study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. Journal of Molecular Catalysis A: Chemical, 415, 27–36. https://doi.org/10.1016/j.molcata.2016.01.027

  • Srivastava, S., Jadeja, G. C., & Parikh, J. (2017). Synergism studies on alumina-supported copper nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation. Journal of Molecular Catalysis A: Chemical, 426(Part A), 244–256. https://doi.org/10.1016/j.molcata.2016.11.023

  • Tanasoi, S., Tanchoux, N., Adriana, U., Tichit, D., Sandulescu, I., Fajula, F., & Marcu, I. C. (2009). New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation. Applied Catalysis A: General, 363(1-2), 135-142. https://doi.org/10.1016/j.apcata.2009.05.007

  • Tasyurek, K. C., Bugdayci, M., & Yucel, O. (2018). Reduction conditions of metallic calcium from magnesium production residues. Metals, 8(6), Article 383. https://doi.org/10.3390/met8060383

  • Thirupathi, B., & Smirniotis, P. G. (2012). Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 288, 74–83. https://doi.org/10.1016/j.jcat.2012.01.003

  • Vanama, P. K., Kumar, A., Ginjupalli, S. R., & Komandur, V. R. C. (2015). Vapor-phase hydrogenolysis of glycerol over nanostructured Ru/MCM-41 catalysts. Catalysis Today, 250, 226–238. https://doi.org/10.1016/j.cattod.2014.03.036

  • Vargas-Hernández, D., Rubio-Caballero, J. M., Santamaría-González, J., Moreno-Tost, R., Mérida-Robles, J. M., Pérez-Cruz, M. A., Jiménez-López, A., Hernández-Huesca, R., & Maireles-Torres, P. (2014). Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. Journal of Molecular Catalysis A: Chemical, 383-384, 106–113. https://doi.org/10.1016/j.molcata.2013.11.034

  • Vasiliadou, E. S., & Lemonidou, A. A. (2011). Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis. Applied Catalysis A: General, 396(1-2), 177-185. https://doi.org/10.1016/j.apcata.2011.02.014

  • Wen, C., Yin, A., Cui, Y., Yang, X., Dai, W. L., & Fan, K. (2013). Enhanced catalytic performance for SiO2–TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate. Applied Catalysis A: General, 458, 82– 89. https://doi.org/10.1016/j.apcata.2013.03.021

  • Yu, W., Zhao, J., Ma, H., Miao, H., Song, Q., & Xu, J. (2010). Aqueous hydrogenolysis of glycerol over Ni–Ce/AC catalyst: Promoting effect of Ce on catalytic performance. Applied Catalysis A: General, 383(1-2), 73-78. https://doi.org/10.1016/j.apcata.2010.05.023

  • Yuan, Z., Wu, P., Gao, J., & Lu, X. (2009). Pt/solid-base: A predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution. Catalysis Letters, 130, 261-265. https://doi.org/10.1007/s10562-009-9879-0

  • Zhao, F., Li, S., Wu, X., Yue, R., Li, W., Zha, X., Deng, Y., & Chen, Y. (2019). Catalytic behaviour of flame-made CuO-CeO2 nanocatalysts in efficient co oxidation. Catalysts, 9(3), Article 256. https://doi.org/10.3390/catal9030256

  • Zhao, S., Yue, H., Zhao, Y., Wang, B., Geng, Y., Lv, J., Wang, S., Gong, J., & Ma, X. (2013). Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant. Journal of Catalysis, 297, 142-150. https://doi.org/10.1016/j.jcat.2012.10.004

  • Zhao, Y., Zhang, Y., Wang, Y., Zhang, J., Xu, Y., Wang, S., & Ma, X. (2017). Structural evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A: General, 539, 59–69. https://doi.org/10.1016/j.apcata.2017.04.001

  • Zheng, L., Xia, S., & Hou, Z. (2015). Hydrogenolysis of glycerol over Cu-substituted hydrocalumite mediated catalysts. Applied Clay Science, 118, 68–73. https://doi.org/10.1016/j.clay.2015.09.002

  • Zhu, S., Gao, X., Zhu, Y., Zhu, Y., Zheng, H., & Li, Y. (2013). Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Catalysis, 303, 70–79. https://doi.org/10.1016/j.jcat.2013.03.018