PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (1) Jan. 2024 / JST-4357-2023

 

Conceptual Design and Selection of Natural Fibre Reinforced Composite Cyclist Helmet Liner Using an Integrated Approach

Nurul Ain Maidin, Mohd Sapuan Salit, Mastura Mohammad Taha and Mohd Zuhri Mohamed Yusoff

Pertanika Journal of Science & Technology, Volume 32, Issue 1, January 2024

DOI: https://doi.org/10.47836/pjst.32.1.23

Keywords: Biomimetics, concept selection, conceptual design, cyclist helmet liner, GRA, integrated approach, morphological chart, TRIZ

Published on: 15 January 2024

This paper describes the conceptual design phase in the product development of a natural fibre composites cyclist helmet liner, beginning with idea generation and ending with selecting the best design concept. The integrated Theory of Inventive Problem Solving (TRIZ), Biomimetic methods, and the Grey Relational Analysis (GRA) method are demonstrated in this paper. This work aims to produce nature-inspired design concepts and determine the best design concept for the composite cyclist helmet liner. Following that, four design concepts were generated using the TRIZ-Biomimetic method, and the variance of concepts was developed using a morphological chart. The GRA method was chosen as the multiple criteria decision-making tool to compare their cost and weight criteria. The design concept C1 was selected as the best design concept for the natural fibre composites of cyclist helmet liner conceptual design when the highest grey relational grade (GRG) value and rank with a value of 1.0000 satisfied the GRA method conditions. This paper demonstrates how the integrated method of TRIZ-Biomimetics-Morphological Chart and GRA helps researchers and engineers develop designs inspired by nature and select the best design concept during the conceptual design stage using a systematic strategy and justified solutions.

  • Ahmad, F., Choi, H. S., & Park, M. K. (2015). A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10-24. https://doi.org/10.1002/ mame.201400089.

  • Al-Ghazali, N. A., Aziz, F. N. A. A., Abdan, K., & Nasir, N. A. M. (2022). Mechanical properties of natural fibre reinforced geopolymer composites: A review. Pertanika Journal of Science and Technology, 30(3), 2053-2069. https://doi.org/10.47836/pjst.30.3.16

  • Baker, S. P., Li, G., & Fowler, C., & Dannenberg A. (1993) Injuries to Bicyclists: A National Perspective. National Academies. https://trid.trb.org/view/405159

  • Bharath, B., Kumar, G. C., Shivanna, G., Hussain, S. S., Chandrashekhar, B., Raj, B. A. S., Kumar, S. A., & Girisha, C. (2018). Fabrication and mechanical characterization of bio-composite helmet. Materials Today: Proceedings, 5(1), 2716-2720. https://doi.org/10.1016/j.matpr.2018.01.053

  • Bharath, K. N., & Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Science and Engineering of Composite Materials, 23(2), 123-133. https://doi.org/10.1515/secm-2014-0088

  • Bhudolia, S. K., Gohel, G., Subramanyam, E. S. B., Leong, K. F., & Gerard, P. (2021). Enhanced impact energy absorption and failure characteristics of novel fully thermoplastic and hybrid composite bicycle helmet shells. Materials and Design, 209, Article 110003. https://doi.org/10.1016/j.matdes.2021.110003

  • Blanco, D. H., Cernicchi, A., & Galvanetto, U. (2014). Design of an innovative optimized motorcycle helmet. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 228(2), 95-110. https://doi.org/10.1177/175433711351874

  • Bliven, E., Rouhier, A., Tsai, S., Willinger, R., Bourdet, N., Deck, C., Madey, S. M., & Bottlang, M. (2019a). A novel strategy for mitigation of oblique impacts in bicycle helmets. Journal of Forensic Biomechanics, 10(1), Article 1000141. https://doi.org/10.4172/2090-2697.1000141

  • Bliven, E., Rouhier, A., Tsai, S., Willinger, R., Bourdet, N., Deck, C., Madey, S. M., & Bottlang, M. (2019b). Evaluation of a novel bicycle helmet concept in oblique impact testing. Accident Analysis & Prevention, 124, 58-65. https://doi.org/10.1016/j.aap.2018.12.017

  • Boria, S., & Forasassi, G. (2008). Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car. WIT Transactions on The Built Environment, 98, 167-176. https://doi.org/10.2495/SU080171

  • Cerniglia, D., Lombardo, E., & Nigrelli, V. (2008). Conceptual design by TRIZ: An application to a rear underrun protective device for industrial vehicle. AIP Conference Proceedings, 1060(1), 328-331. https://doi.org/10.1063/1.3037085

  • Cristóbal, J. R. S., Carral, L., Diaz, E., Fraguela, J. A., & Iglesias, G. (2018). Complexity and project management: A general overview. Complexity, 2018, Article 4891286. https://doi.org/10.1155/2018/4891286

  • Deng, J. L. (1989). Grey information space. Journal of Grey System, 1(2), 103-117.

  • Du, N., Yang, Z., Liu, X. Y., Li, Y., & Xu, H. Y. (2011). Structural origin of the strain-hardening of spider silk. Advanced Functional Materials, 21(4), 772-778. https://doi.org/10.1002/adfm.201001397

  • Gavrila, L., & Rosu, P. (2011). Tensile properties analysis of honeycomb structures. Review of the Air Force Academy, 18(1), 25-28.

  • Geum, Y., Cho, Y., & Park, Y. (2011). A systematic approach for diagnosing service failure: Service-specific FMEA and grey relational analysis approach. Mathematical and Computer Modelling, 54(11-12), 3126-3142. https://doi.org/10.1016/j.mcm.2011.07.042

  • Gosline, J. M., Demont, M. E., & Denny, M. W. (1986). The structure and properties of spider silk. Endeavour, 10(1), 37-43. https://doi.org/10.1016/0160-9327(86)90049-9

  • Høye, A. (2018). Bicycle helmets–to wear or not to wear? A meta-analyses of the effects of bicycle helmets on injuries. Accident Analysis & Prevention, 117, 85-97. https://doi.org/10.1016/j.aap.2018.03.026

  • Ilevbare, I. M., Probert, D., & Phaal, R. (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation, 33(2-3), 30-37. https://doi.org/10.1016/j.technovation.2012.11.003.

  • Jayakrishna, K., & Vinodh, S. (2017). Application of grey relational analysis for material and end of life strategy selection with multiple criteria. International Journal of Materials Engineering Innovation, 8(3-4), 250-272. https://doi.org/10.1504/IJMATEI.2017.090241

  • Kassar, S., Siblini, S., Wehbi, B., Abro, O., & Shehadeh, M. (2016, November 11-17). Towards a safer design of helmets: Finite element and experimental assessment. [Paper presentation]. International Mechanical Engineering Congress and Exposition, Arizona, USA. https://doi.org/10.1115/IMECE2016-66778

  • Ko, F. K., & Jovicic, J. (2004). Modeling of mechanical properties and structural design of spider web. Biomacromolecules, 5(3), 780-785. https://doi.org/10.1021/bm0345099

  • Lenau, T. A. (2009, August 24-27). Biomimetics as a design methodology possibilities and challenges. [Paper presentation] DS 58-5: Proceedings of ICED 09, the 17th International Conference on Engineering Design, California, USA.

  • Leng, B., Ruan, D., & Tse, K. M. (2022). Recent bicycle helmet designs and directions for future research: A comprehensive review from material and structural mechanics aspects. International Journal of Impact Engineering, 168, Article 104317. https://doi.org/10.1016/j.ijimpeng.2022.104317

  • Li, M., Ming, X., Zheng, M., Xu, Z., & He, L. (2013). A framework of product innovative design process based on TRIZ and patent circumvention. Journal of Engineering Design, 24(12), 830-848. https://doi.org/10.1080/09544828.2013.856388.

  • Lim, C., Yun, D., Park, I., & Yoon, B. (2018). A systematic approach for new technology development by using a biomimicry-based TRIZ contradiction matrix. Creativity and Innovation Management, 27(4), 414-430. https://doi.org/10.1111/caim.12273.

  • Mahmoudi, A., Javed, S., Liu, S., & Deng, X. (2020). Distinguishing coefficient driven sensitivity analysis of GRA model for intelligent decisions: Application in project management. Technological and Economic Development of Economy, 26(3), 621-641. https://doi.org/10.3846/tede.2019.11890.

  • Maidin, N. A., Sapuan, S. M., Taha, M. M., & Yusoff, M. Z. M. (2022). Material selection of natural fibre using a grey relational analysis (GRA) approach. BioResources, 17(1), 109-131. https://doi.org/10.15376/BIORES.17.1.109-131

  • Maidin, N. A., Sapuan, S. M., Mastura, M. T., & Zuhri, M. Y. M. (2023). Materials selection of thermoplastic matrices of natural fibre composites for cyclist helmet using an integration of DMAIC approach in six sigma method together with grey relational analysis approach. Journal of Renewable Materials, 11(5), 2381-2397. https://doi.org/10.32604/jrm.2023.026549

  • Mansor, M. R., Sapuan, S. M., Salim, M. A., Akop, M. Z., & Musthafah, M. T. (2016). Concurrent design of green composites. In D. Verman, S. Jain, X. Zhang & P. C. Gope (Eds.), Green Approaches to Biocomposite Materials Science and Engineering (pp.48-75). IGI Global. https://doi.org/10.4018/978-1-5225-0424-5.ch003

  • McKenzie, B. (2014). Modes less traveled: Bicycling and walking to work in the united states, 2008-2012 (No. ACS-25). US Department of Commerce, Economics and Statistics Administration. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://lede-admin.usa.streetsblog.org/wp-content/uploads/sites/46/2014/05/acs-25.pdf

  • Milwich, M., Speck, T., Speck, O., Stegmaier, T., & Planck, H. (2006). Biomimetics and technical textiles: Solving engineering problems with the help of nature's wisdom. American Journal of Botany, 93(10), 1455-1465. https://doi.org/10.3732/ajb.93.10.1455

  • Novak, J., Burton, D., & Crouch, T. (2019). Aerodynamic test results of bicycle helmets in different configurations: Towards a responsive design. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 233(2), 268-276. https://doi.org/10.1177/1754337118822613

  • Ortiz, J., Zhang, G., & McAdams, D. A. (2018). A model for the design of a pomelo peel bioinspired foam. Journal of Mechanical Design, 140(11), 1-5. https://doi.org/10.1115/1.4040911.

  • Pappadis, M. R., Lundine, J. P., Kajankova, M., Hreha, K. P., Doria, N., Cai, X. C., & Flanagan, J. E. (2023). Education on the consequences of traumatic brain injury for children and adolescents with TBI and families/caregivers: A systematic scoping review. Brain Injury, 37(1), 1-23. https://doi.org/10.1080/02699052.2022.2145357

  • Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038

  • Pucher, J., Dill, J., & Handy, S. (2010). Infrastructure, programs, and policies to increase bicycling: An international review. Preventive Medicine, 50(Supplement), S106-S125. https://doi.org/10.1016/j.ypmed.2009.07.028

  • Rivara, F. P., Thompson, D. C., Patterson, M. Q., & Thompson, R. S. (1998). Prevention of bicycle-related injuries: Helmets, education, and legislation. Annual Review of Public Health, 19(1), 293-318. https://doi.org/10.1146/annurev.publhealth.19.1.293

  • Sapuan, S. M. (2017). Conceptual design in concurrent engineering for composites. In Composite Materials: Concurrent Engineering Approach (pp.141-207). Oxford. https://doi.org/10.1016/B978-0-12-802507-9.00005-2

  • Sapuan, S. M., & Mansor, M. R. (2014). Concurrent engineering approach in the development of composite products: A review. Materials & Design, 58, 161-167. https://doi.org/10.1016/j.matdes.2014.01.059

  • Sapuan, S. M., & Mansor, M. R. (2015). Design of natural fiber-reinforced composite structures. In R. D. S. G. Campilho (Ed.), Natural Fiber Composites (pp. 255-278). CRC Press.

  • Shaharuzaman, M. A., Sapuan, S. M., Mansor, M. R., & Zuhri, M. Y. M. (2020). Conceptual design of natural fiber composites as a side-door impact beam using hybrid approach. Journal of Renewable Materials, 8(5), 549-563. https://doi.org/10.32604/jrm.2020.08769

  • Takhounts, E. G., Craig, M. J., Moorhouse, K., McFadden, J., & Hasija, V. (2013, November 11-13). Development of Brain Injury Criteria (BrIC) 2013-22-0010. [Paper presentation]. 57th Stapp Car Crash Conference, Orlando, Florida.

  • The Worldwatch Institute. (2013). Vital Signs Volume 20: The Trends That Are Shaping Our Future. Island Press.

  • Ulrich, K. T., & Eppinger, S. D. (2012). Chapter 2: Development process and organizations. In Product Design and Development (5th ed., pp.11-32). McGraw-Hill Irwin.

  • Vincent, J. F. V. (2002). Survival of the cheapest. Materials Today, 5(12), 28-41. https://doi.org/10.1016/S1369-7021(02)01237-3

  • Vincent, J. F. V. (2009). Biomimetics - A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(8), 919-939. https://doi.org/10.1243/09544119JEIM561

  • Yamashina, H., Ito, T., & Kawada, H. (2002). Innovative product development process by integrating QFD with TRIZ. International Journal of Production Research, 40(5), 1031-1050. https://doi.org/10.1080/00207540110098490

  • Yusof, N. S. B., Sapuan, S. M., Sultan, M. T. H., & Jawaid, M. (2020). Conceptual design of oil palm fibre reinforced polymer hybrid composite automotive crash box using integrated approach. Journal of Central South University, 27(1), 64-75. https://doi.org/10.1007/s11771-020-4278-1