e-ISSN 2231-8526
ISSN 0128-7680
Siti Afiqah ‘Aisyah Murtadza, Nurul Asyikin Md Zaki, Junaidah Jai, Fazlena Hamzah, Nur Suhanawati Ashaari, Dewi Selvia Fardhyanti, Megawati and Nadya Alfa Cahaya Imani
Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024
DOI: https://doi.org/10.47836/pjst.32.2.07
Keywords: Chitosan, coacervation, encapsulation efficiency, essential oils, gelatin, microencapsulation
Published on: 26 March 2024
Complex coacervation is an encapsulation technique used to preserve the bio functionality of essential oils as well as provide controlled release. In this present work, encapsulation of Citrus Hystrix essential oil (CHEO) was formed by a complex coacervation technique with Gelatin-B (Gel B) and Chitosan (Chi) as the capping materials. The suitable encapsulation formulation was investigated as a function of pH and wall ratio using Zeta Potential analysis. Turbidity measurement and coacervate yield were carried out to confirm the suitable condition. Total Phenolic Content (TPC) was used to obtain the encapsulation efficiency (EE%) of the process. Results show that the suitable condition for coacervate formation between Gel B and Chi ratio of 5:1 was at pH 5.8, which produced a high encapsulation efficiency of 94.81% ± 2.60. FTIR analysis validates the formation of coacervate as well as the encapsulated CHEO. The encapsulates obtained were spherical and dominated by 194.557 um particles. The CHEO was successfully encapsulated by a complex coacervation method.
Adamiec, J., Borompichaichartkul, C., Srzednicki, G., Panket, W., Piriyapunsakul, S., & Zhao, J. (2012). Microencapsulation of kaffir lime oil and its functional properties. Drying Technology, 30(9), 914-920. https://doi.org/10.1080/07373937.2012.666777
Ahmed, A. F., Attia, F. A. K., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299-305. https://doi.org/10.1016/j.fshw.2019.07.004
Ashaari, N. S., Mohamad, N. E., Afzinizam, A. H., Rahim, M. H. A., Lai, K. S., & Abdullah, J. O. (2021). Chemical composition of hexane-extracted plectranthus amboinicus leaf essential oil: Maximizing contents on harvested plant materials. Applied Sciences, 11(22), Article 10838. https://doi.org/10.3390/app112210838
Aziz, F. R. A., Jai, J., Raslan, R., & Subuki, I. (2015). Microencapsulation of essential oils application in textile: A review. Advanced Materials Research, 1113, 346-351. https://doi.org/10.4028/www.scientific.net/amr.1113.346
Aziz, F. R. A., Jai, J., Raslan, R., & Subuki, I. (2016). Microencapsulation of citronella oil by complex coacervation using chitosan-gelatin (b) system: Operating design, preparation and characterization. MATEC Web of Conferences, 69, Article 04002. https://doi.org/10.1051/matecconf/20166904002
Aziz, S., Gill, J., Dutilleul, P., Neufeld, R., & Kermasha, S. (2014). Microencapsulation of krill oil using complex coacervation. Journal of Microencapsulation, 31(8), 774-784. https://doi.org/10.3109/02652048.2014.932028
Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182. https://doi.org/10.1111/1541-4337.12179
Burgess, D. J., & Carless, J. E. (1984). Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. Journal of Colloid and Interface Science, 98(1), 1-8. https://doi.org/10.1016/0021-9797(84)90472-7
Burgess, D. J., & Carless, J. E. (1985). Manufacture of gelatin/gelatin coacervate microcapsules. International Journal of Pharmaceutics, 27(1), 61-70. https://doi.org/10.1016/0378-5173(85)90185-1
Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 13(8), 5156-5186. https://doi.org/10.3390/md13085156
Comunian, T. A., & Favaro-Trindade, C. S. (2016). Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids, 61, 442-457. https://doi.org/10.1016/j.foodhyd.2016.06.003
De Matos, E. F., Scopel, B. S., & Dettmer, A. (2018). Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. Journal of Environmental Chemical Engineering, 6(2), 1989-1994. https://doi.org/10.1016/j.jece.2018.03.002
Dima, C., Pətraşcu, L., Cantaragiu, A., Alexe, P., & Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chemistry, 195, 39-48. https://doi.org/10.1016/j.foodchem.2015.05.044
Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296-302. https://doi.org/10.1016/j.jfda.2013.11.001
Dong, Z. J., Touré, A., Jia, C. S., Zhang, X. M., & Xu, S. Y. (2007). Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation. Journal of Microencapsulation, 24(7), 634-646. https://doi.org/10.1080/02652040701500632
Eghbal, N., & Choudhary, R. (2018). Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT, 90, 254-264. https://doi.org/10.1016/j.lwt.2017.12.036
Elzoghby, A. O. (2013). Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 172(3), 1075-1091. https://doi.org/10.1016/j.jconrel.2013.09.019
Emamverdian, P., Moghaddas Kia, E., Ghanbarzadeh, B., & Ghasempour, Z. (2020). Characterization and optimization of complex coacervation between soluble fraction of Persian gum and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 607, Article 125436. https://doi.org/10.1016/j.colsurfa.2020.125436
Espinosa-Andrews, H., Enríquez-Ramírez, K. E., García-Márquez, E., Ramírez-Santiago, C., Lobato-calleros, C., & Vernon-Carter, J. (2013). Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohydrate Polymers, 95(1), 161-166. https://doi.org/10.1016/j.carbpol.2013.02.053
Fan, S., Wang, D., Wen, X., Li, X., Fang, F., Richel, A., Xiao, N., Fauconnier, M., Hou, C., & Zhang, D. (2023). Incorporation of cinnamon essential oil-loaded pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocolloids, 138, Article 108438. https://doi.org/10.1016/j.foodhyd.2022.108438
Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510-523. https://doi.org/10.1016/j.tifs.2010.08.003
Fraj, J., Petrović, L., Đekić, L., Budinčić, J. M., Bučko, S., & Katona, J. (2021). Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. Journal of Food Engineering, 292, Article 110353. https://doi.org/10.1016/j.jfoodeng.2020.110353
Ghadermazi, R., Asl, A. K., & Tamjidi, F. (2019). Optimization of whey protein isolate-quince seed mucilage complex coacervation. International Journal of Biological Macromolecules, 131, 368-377. https://doi.org/10.1016/j.ijbiomac.2019.03.026
Gharanjig, H., Gharanjig, K., Hosseinnezhad, M., & Jafari, S. M. (2020). Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules, 148, 31-40. https://doi.org/10.1016/j.ijbiomac.2020.01.115
Girardi, N. S., García, D., Passone, M. A., Nesci, A., & Etcheverry, M. (2017). Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration and Biodegradation, 116, 227-233. https://doi.org/10.1016/j.ibiod.2016.11.003
Gonçalves, N. D., Grosso, C. R. F., Rabelo, R. S., Hubinger, M. D., & Prata, A. S. (2018). Comparison of microparticles produced with combinations of gelatin, chitosan and gum Arabic. Carbohydrate Polymers, 196, 427-432. https://doi.org/10.1016/j.carbpol.2018.05.027
Houng, P., Ly, K., & Lay, S. (2023). Valorization of kaffir lime peel through extraction of essential oil and process optimization for phenolic compounds. Journal of Chemical Technology & Biotechnology, 98(11), 2745-2753. https://doi.org/10.1002/jctb.7354
Hussein, A. M. S., Lotfy, S. N., Kamil, M. M., & Hassan, M. E. (2016). Effect of microencapsulation on chemical composition and antioxidant activity of cumin and fennel essential oils. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(3), 1565-1574.
Kang, M. K., Dai, J., & Kim, J. C. (2012). Ethylcellulose microparticles containing chitosan and gelatin: pH-dependent release caused by complex coacervation. Journal of Industrial and Engineering Chemistry, 18(1), 355-359. https://doi.org/10.1016/j.jiec.2011.11.099
Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Complex coacervation between flaxseed protein isolate and flaxseed gum. Food Research International, 72, 91-97. https://doi.org/10.1016/j.foodres.2015.03.046
Lakkis, J. M. (2016). Encapsulation and controlled release technologies in food systems. John Wiley & Sons. https://doi.org/10.1002/9781118946893
Lemetter, C. Y. G., Meeuse, F. M., & Zuidam, N. J. (2009). Control of the morphology and the size of complex coacervate microcapsules during scale-up. AIChE Journal, 55(6), 1487-1496. https://doi.org/10.1002/aic.11816
Lubinska-Szczygeł, M., Różańska, A., Dymerski, T., Namieśnik, J., Katrich, E., & Gorinstein, S. (2018). A novel analytical approach in the assessment of unprocessed kaffir lime peel and pulp as potential raw materials for cosmetic applications. Industrial Crops and Products, 120, 313-321. https://doi.org/10.1016/j.indcrop.2018.04.036
Lv, Y., Zhang, X., Abbas, S., & Karangwa, E. (2012). Simplified optimization for microcapsule preparation by complex coacervation based on the correlation between coacervates and the corresponding microcapsule. Journal of Food Engineering, 111(2), 225-233. https://doi.org/10.1016/j.jfoodeng.2012.02.030
Lv, Y., Zhang, X., Zhang, H., Abbas, S., & Karangwa, E. (2013). The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, 30(1), 323-332. https://doi.org/10.1016/j.foodhyd.2012.06.007
Manaf, M. A., Subuki, I., Jai, J., Raslan, R., & Mustapa, A. N. (2018, May). Encapsulation of volatile citronella essential oil by coacervation: Efficiency and release study. In IOP Conference Series: Materials Science and Engineering (Vol. 358, p. 012072). IOP Publishing. https://doi.10.1088/1757-899X/358/1/012072
Meka, V. S., Sing, M. K. G., Pichika, M. R., Nali, S. R., Kolapalli, V. R. M., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug Discovery Today, 22(11), 1697-1706. https://doi.org/10.1016/j.drudis.2017.06.008
Mousavi, M. M., Torbati, M., Farshi, P., Hosseini, H., Mohammadi, M. A., Hosseini, S. M., & Hosseinzadeh, S. (2021). Evaluation of design and fabrication of food-grade nanofibers from chitosan-gelatin for nanoencapsulation of stigmasterol using the electrospinning method. Advanced Pharmaceutical Bulletin, 11(3), 514-521. https://doi.org/10.34172/apb.2021.059
Ngamekaue, N., & Chitprasert, P. (2019). Effects of beeswax-carboxymethyl cellulose composite coating on shelf-life stability and intestinal delivery of holy basil essential oil-loaded gelatin microcapsules. International Journal of Biological Macromolecules, 135, 1088-1097. https://doi.org/10.1016/j.ijbiomac.2019.06.002
Oliveira, W. Q., Araújo, A. W. O., Wurlitzer, N. J., & Maria, S. R. (2019). Effect of the reaction volume on the formation of microparticles of the pequi (Caryocar coriaceum Wittm.) oil by complex coacervation. Chemical Engineering Transactions, 74, 445-450. https://doi.org/10.3303/CET1974075
Otálora, M. C., Castaño, J. A. G., & Wilches-Torres, A. (2019). Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica. LWT, 112, Article 108234. https://doi.org/10.1016/j.lwt.2019.06.001
Othman, S. N. A. M., Hassan, M. A., Nahar, L., Basar, N., Jamil, S., Sarker, S., Othman, S. M., Hassan, M. A., Nahar, L., Basar, N., Jamil, S., & Sarker, S. (2016). Essential oils from the Malaysian citrus (Rutaceae) medicinal plants. Medicines, 3(2), Article 13. https://doi.org/10.3390/medicines3020013
Pedro, A. S., Cabral-Albuquerque, E., Ferreira, D., & Sarmento, B. (2009). Chitosan: An option for development of essential oil delivery systems for oral cavity care? Carbohydrate Polymers, 76(4), 501-508. https://doi.org/10.1016/j.carbpol.2008.12.016
Phong, W. N., Gibberd, M. R., Payne, A. D., Dykes, G. A., & Coorey, R. (2022). Methods used for extraction of plant volatiles have potential to preserve truffle aroma: A review. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1677-1701. https://doi.org/10.1111/1541-4337.12927
Poshadri, A., & Aparna, K. (2010). Microencapsulation technology: A review. Journal of Research ANGRAU, 38(1), 86-102.
Prata, A. S., & Grosso, C. R. F. (2015). Production of microparticles with gelatin and chitosan. Carbohydrate Polymers, 116, 292-299. https://doi.org/10.1016/j.carbpol.2014.03.056
Qin, X., Lu, Y., Peng, Z., Fan, S., & Yao, Y. (2018). Systematic chemical analysis approach reveals superior antioxidant capacity via the synergistic effect of flavonoid compounds in red vegetative tissues. Frontiers in Chemistry, 6, Article 314274. https://doi.org/10.3389/fchem.2018.00009
Raksa, A., Sawaddee, P., Raksa, P., & Aldred, A. K. (2017). Microencapsulation, chemical characterization, and antibacterial activity of Citrus hystrix DC (kaffir lime) peel essential oil. Monatshefte Fur Chemie, 148, 1229-1234. https://doi.org/10.1007/s00706-017-2015-8
Rosli, N. A., Hasham, R., & Aziz, A. A. (2018). Design and physicochemical evaluation of nanostructured lipid carrier encapsulated zingiber zerumbet oil by d-optimal mixture design. Jurnal Teknologi, 80(3), 105-113. https://doi.org/10.11113/jt.v80.11268
Roy, J. C., Giraud, S., Ferri, A., Mossotti, R., Guan, J., & Salaün, F. (2018). Influence of process parameters on microcapsule formation from chitosan - Type B gelatin complex coacervates. Carbohydrate Polymers, 198, 281-293. https://doi.org/10.1016/j.carbpol.2018.06.087
Rungwasantisuk, A., & Raibhu, S. (2020). Application of encapsulating lavender essential oil in gelatin/gum-Arabic complex coacervate and varnish screen-printing in making fragrant gift-wrapping paper. Progress in Organic Coatings, 149, Article 105924. https://doi.org/10.1016/j.porgcoat.2020.105924
Shetta, A., Kegere, J., & Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International Journal of Biological Macromolecules, 126, 731-742. https://doi.org/10.1016/j.ijbiomac.2018.12.161
Shi, L., Beamer, S. K., Yang, H., & Jaczynski, J. (2018). Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation. Food Chemistry, 244, 284-291. https://doi.org/10.1016/j.foodchem.2017.10.050
Shinde, U. A., & Nagarsenker, M. S. (2009). Characterization of gelatin-sodium alginate complex coacervation system. Indian Journal of Pharmaceutical Sciences, 71(3), 313-317. https://doi.org/10.4103/0250-474X.56033
Silva, M. C., & Andrade, C. T. (2009). Evaluating conditions for the formation of chitosan/gelatin microparticles. Polimeros, 19(2), 133-137. https://doi.org/10.1590/S0104-14282009000200010
Singh, N., & Sheikh, J. (2022). Novel Chitosan-Gelatin microcapsules containing rosemary essential oil for the preparation of bioactive and protective linen. Industrial Crops and Products, 178, Article 114549. https://doi.org/10.1016/j.indcrop.2022.114549
Sogias, I. A., Khutoryanskiy, V. V, & Williams, A. C. (2010). Exploring the factors affecting the solubility of chitosan in water. Macromolecular Chemistry and Physics, 211(4), 426-433. https://doi.org/10.1002/macp.200900385
Sreepian, A., Sreepian, P. M., Chanthong, C., Mingkhwancheep, T., & Prathit, P. (2019). Antibacterial activity of essential oil extracted from Citrus hystrix (kaffir lime) peels: An in vitro study. Tropical Biomedicine, 36(2), 531-541.
Srifuengfung, S., Bunyapraphatsara, N., Satitpatipan, V., Tribuddharat, C., Junyaprasert, V. B., Tungrugsasut, W., & Srisukh, V. (2020). Antibacterial oral sprays from kaffir lime (Citrus hystrix DC.) fruit peel oil and leaf oil and their activities against respiratory tract pathogens. Journal of Traditional and Complementary Medicine, 10(6), 594-598. https://doi.org/10.1016/j.jtcme.2019.09.003
Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286. https://doi.org/10.1016/j.ijbiomac.2018.10.144
Timilsena, Y. P., Wang, B., Adhikari, R., & Adhikari, B. (2016). Preparation and characterization of chia seed protein isolate-chia seed gum complex coacervates. Food Hydrocolloids, 52, 554-563. https://doi.org/10.1016/j.foodhyd.2015.07.033
Venkatachalam, K. (2019). Changes in phytochemicals and antioxidant properties of kaffir lime leaves under chilling storage. Kaen Kaset= Khon Kaen Agriculture Journal, 47(Suppl. 1), 531-536.
Vishwakarma, G. S., Gautam, N., Babu, J. N., Mittal, S., & Jaitak, V. (2016). Polymeric encapsulates of essential oils and their constituents: A review of preparation techniques, characterization, and sustainable release mechanisms. Polymer Reviews, 56(4), 668-701. https://doi.org/10.1080/15583724.2015.1123725
Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358-365. https://doi.org/10.1016/j.foodchem.2014.02.135
Wang, B., Akanbi, T. O., Agyei, D., Holland, B. J., & Barrow, C. J. (2018). Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds. In A. M. Grumezescu & A. M. Holban (Eds.), Role of Materials Science in Food Bioengineering (pp. 235-261). Academic Press. https://doi.org/10.1016/C2016-0-00658-7
Wang, H., Lin, X., Zhu, J., Yang, Y., Qiao, S., Jiao, B., Ma, L., & Zhang, Y. (2023). Encapsulation of lutein in gelatin type A/B-chitosan systems via tunable chains and bonds from tweens: Thermal stability, rheologic property and food 2D/3D printability. Food Research International, 173, Article 113392. https://doi.org/10.1016/j.foodres.2023.113392
Wijaya, Y. A., Widyadinata, D., Irawaty, W., & Ayucitra, A. (2017). Fractionation of phenolic and flavonoid compounds from kaffir lime (Citrus hystrix) peel extract and evaluation of antioxidant activity. Reaktor, 17(3), 111-117. https://doi.org/10.14710/reaktor.17.3.111-117
Yan, C., & Zhang, W. (2014). Coacervation processes. In R. Sobel (Ed.), Microencapsulation in the Food Industry: A Practical Implementation Guide (pp. 125-137). Academic Press. United States. https://doi.org/10.1016/C2012-0-00852-6
Yang, J., Han, S., Zheng, H., Dong, H., & Liu, J. (2015). Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydrate Polymers, 123, 53-66. https://doi.org/10.1016/j.carbpol.2015.01.029
Yu, F., Li, Z., Zhang, T., Wei, Y., Xue, Y., & Xue, C. (2017). Influence of encapsulation techniques on the structure, physical properties, and thermal stability of fish oil microcapsules by spray drying. Journal of Food Process Engineering, 40(6), Article e12576. https://doi.org/10.1111/jfpe.12576
ISSN 0128-7680
e-ISSN 2231-8526