e-ISSN 2231-8526
ISSN 0128-7680
Sana Zulfiqar, Abdullah Aziz Saad, Zulkifli Ahmad, Feizal Yusof and Zuraihana Bachok
Pertanika Journal of Science & Technology, Volume 31, Issue 6, October 2023
DOI: https://doi.org/10.47836/pjst.31.6.23
Keywords: Characterization of material, FEM analysis, hyper-elastic material models, material parameters, polydimethylsiloxane
Published on: 12 October 2023
The most researched elastomer in recent years is polydimethylsiloxane (PDMS), which has several uses in various engineering industries. One of the PDMS’s key characteristics is its hyper-elasticity nature, which enables the production of sensors, flexible electrical circuits, transducers, and antennas. This study used the hyper-elastic constitutive models to predict the mechanical behavior of incompressible, isotropic, and hyper-elastic material PDMS under uniaxial tension. These models are curve-fitting tools that consist of strain energy density and stress functions. To pursue the analysis, a new formulation of PDMS substrate was proposed, and a tensile test was performed to evaluate its stress-strain behavior. The experimental data was implemented on various hyper-elastic models using Abaqus, like Mooney-Rivlin, Yeoh, Ogden, and reduced polynomial models. The goodness of fit of every model was evaluated by calculating R2 values. Consequently, among these models, the reduced polynomial model with 6 material constants possessed the highest R2 value (0.9936) and was considered the best-fit model among the other models. Furthermore, the material constants of this model were applied to the 3D dumbbell-shaped model of PDMS in Abaqus for its validation. The boundary conditions were applied on the model similar to the experimental setup, as 33 mm displacement on one end and the other was fixed with all DOF. For mesh quality and mesh sensitivity of the material, various mesh sizes with the linear formulation (C3D8RH) were utilized, and the best mesh size was selected to evaluate very close results with the experimental.
Akther, F., Yakob, S. B., Nguyen, N. T., & Ta, H. T. (2020). Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors, 10(11), Article 182. https://doi.org/10.3390/bios10110182
Ali, A., Hosseini, M., & Sahari, B. B. (2010). A review of constitutive models for rubber-like materials. American Journal of Engineering and Applied Sciences, 3(1), 232-239. https://doi.org/10.3844/ajeassp.2010.232.239
Anssari-Benam, A., & Bucchi, A. (2021). A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. International Journal of Non-Linear Mechanics, 128, Article 103626. https://doi.org/https://doi.org/10.1016/j.ijnonlinmec.2020.103626
ASTM D412-16. (2021). Standard test methods for vulcanized rubber and thermoplastic elastomers-tension. ASTM International. https://doi.org/10.1520/D0412-16R21
Aziz, N. A., Saad, A. A., Ahmad, Z., Zulfiqar, S., Ani, F. C., & Samsudin, Z. (2020). Chapter 8 - Stress analysis of stretchable conductive polymer for electronics circuit application. In A. S. H. Makhlouf & M. Aliofkhazraei (Eds.), Handbook of Materials Failure Analysis (pp. 205-224). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-101937-5.00008-7
Bashirzadeh, Y., Qian, S., & Maruthamuthu, V. (2018). Non-intrusive measurement of wall shear stress in flow channels. Sensors and Actuators, A: Physical, 271, 118-123. https://doi.org/10.1016/j.sna.2018.01.012
Beda, T. (2007). Modeling hyperelastic behavior of rubber: A novel invariant-based and a review of constitutive models. Journal of Polymer Science, Part B: Polymer Physics, 45(13), 1713-1732. https://doi.org/10.1002/polb.20928
Beda, T., & Chevalier, Y. (2003). Hybrid continuum model for large elastic deformation of rubber. Journal of Applied Physics, 94(4), 2701-2706. https://doi.org/10.1063/1.1586471
Bien-aimé, L. K. M., Blaise, B. B., & Beda, T. (2020). Characterization of hyperelastic deformation behavior of rubber-like materials. SN Applied Sciences, 2(4), Article 648. https://doi.org/10.1007/s42452-020-2355-6
Boyce, M. C., & Arruda, E. M. (2000). Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 73(3), 504-523. https://doi.org/10.5254/1.3547602
Casanova-Moreno, J., To, J., Yang, C. W. T., Turner, R. F. B., Bizzotto, D., & Cheung, K. C. (2017). Fabricating devices with improved adhesion between PDMS and gold-patterned glass. Sensors and Actuators, B: Chemical, 246, 904-909. https://doi.org/10.1016/j.snb.2017.02.109
Chen, Z., Tristano, J. R., & Kwok, W. (2003, September 14-17). Combined laplacian and optimization-based smoothing for quadratic mixed surface meshes. In Proceedings of the 12th International Meshing Roundtable, IMR 2003 (pp. 360-370). Santa Fe, New Mexico, USA.
Dassi, F., Kamenski, L., & Si, H. (2016). Tetrahedral mesh improvement using moving mesh smoothing and lazy searching flips. Procedia Engineering, 163, 302-314. https://doi.org/10.1016/j.proeng.2016.11.065
Doan, H. G. M., & Mertiny, P. (2020). Creep testing of thermoplastic fiber-reinforced polymer composite tubular coupons. Materials, 13(20), 1-17. https://doi.org/10.3390/ma13204637
Faghihi, S., Karimi, A., Jamadi, M., Imani, R., & Salarian, R. (2014). Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: Experimental and numerical validation of hyperelastic model. Materials Science and Engineering C, 38(1), 299-305. https://doi.org/10.1016/j.msec.2014.02.015
Gómez, F. S., Lorza, R. L., Bobadilla, M. C., & García, R. E. (2017). Improving the process of adjusting the parameters of finite element models of healthy human intervertebral discs by the multi-response surface method. Materials, 10(10), Article 1116. https://doi.org/10.3390/ma10101116
Gonzalez, M., Axisa, F., Bulcke, M. Vanden, Brosteaux, D., Vandevelde, B., & Vanfleteren, J. (2008). Design of metal interconnects for stretchable electronic circuits. Microelectronics Reliability, 48(6), 825-832. https://doi.org/10.1016/j.microrel.2008.03.025
Guo, Z., & Sluys, L. J. (2006). Application of a new constitutive model for the description of rubber-like materials under monotonic loading. International Journal of Solids and Structures, 43(9), 2799-2819. https://doi.org/10.1016/j.ijsolstr.2005.06.026
Hassler, C., Boretius, T., & Stieglitz, T. (2011). Polymers for neural implants. Journal of Polymer Science, Part B: Polymer Physics, 49(1), 18-33. https://doi.org/10.1002/polb.22169
Íñiguez-Macedo, S., Lostado-Lorza, R., Escribano-García, R., & Martínez-Calvo, M. A. (2019). Finite element model updating combined with multi-response optimization for hyper-elastic materials characterization. Materials, 12(7), Article 1019. https://doi.org/10.3390/ma12071019
Izdihar, K., Razak, H. R. A., Supion, N., Karim, M. K. A., Osman, N. H., & Norkhairunnisa, M. (2021). Structural, mechanical, and dielectric properties of polydimethylsiloxane and silicone elastomer for the fabrication of clinical-grade kidney phantom. Applied Sciences, 11(3), 1-13. https://doi.org/10.3390/app11031172
Jewkes, R., Burton, H. E., & Espino, D. M. (2018). Towards additive manufacture of functional, spline-based morphometric models of healthy and diseased coronary arteries: In vitro proof-of-concept using a porcine template. Journal of Functional Biomaterials, 9(1), Article 15. https://doi.org/10.3390/jfb9010015
Ju, M. L., Jmal, H., Dupuis, R., & Aubry, E. (2014). A Comparison among polynomial model, reduced polynomial model and Ogden model for polyurethane foam. Material Science and Engineering Technology II, 856, 169-173. https://doi.org/10.4028/www.scientific.net/AMR.856.169
Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., & Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13(5), 759-764. https://doi.org/10.1007/s12541-012-0099-y
López-Campos, J. A., Segade, A., Casarejos, E., Fernández, J. R., & Días, G. R. (2019). Hyperelastic characterization oriented to finite element applications using genetic algorithms. Advances in Engineering Software, 133, 52-59. https://doi.org/10.1016/j.advengsoft.2019.04.001
Lorza, R. L., Bobadilla, M. C., Calvo, M. Á. M., & Roldán, P. M. V. (2017). Residual stresses with time-independent cyclic plasticity in finite element analysis of welded joints. Metals, 7(4), Article 136. https://doi.org/10.3390/met7040136
Ma, Y., & Wang, M. (2021). An efficient method to improve the quality of tetrahedron mesh with MFRC. Scientific Reports, 11(1), Article 22802. https://doi.org/10.1038/s41598-021-02187-1
Martin, S., & Bhushan, B. (2017). Transparent, wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces. Journal of Colloid and Interface Science, 488, 118-126. https://doi.org/10.1016/j.jcis.2016.10.094
Martinez, R. F., Lorza, R. L., Delgado, A. A. S., & Pullaguari, N. O. P. (2018). Optimizing presetting attributes by softcomputing techniques to improve tapered roller bearings working conditions. Advances in Engineering Software, 123, 13-24. https://doi.org/10.1016/j.advengsoft.2018.05.005
Martins, P., Peña, E., Calvo, B., Doblaré, M., Mascarenhas, T., Jorge, R. N., & Ferreira, A. (2010). Prediction of nonlinear elastic behaviour of vaginal tissue: Experimental results and model formulation. Computer Methods in Biomechanics and Biomedical Engineering, 13(3), 327-337. https://doi.org/10.1080/10255840903208197
Meissner, B., & Matějka, L. (2002). Comparison of recent rubber-elasticity theories with biaxial stress-strain data: The slip-link theory of Edwards and Vilgis. Polymer, 43(13), 3803-3809. https://doi.org/10.1016/S0032-3861(02)00150-7
Nunes, L. C. S. (2011). Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Materials Science and Engineering: A, 528(3), 1799-1804. https://doi.org/https://doi.org/10.1016/j.msea.2010.11.025
Parthasarathy, V. N., & Kodiyalam, S. (1991). A constrained optimization approach to finite element mesh smoothing. Finite Elements in Analysis and Design, 9(4), 309-320. https://doi.org/10.1016/0168-874X(91)90004-I
Pucci, E., & Saccomandi, G. (2002). A note on the gent model for rubber-like materials. Rubber Chemistry and Technology, 75(5), 839-851. https://doi.org/10.5254/1.3547687
Ribeiro, J., Fernandes, C. S., & Lima, R. (2018). Numerical simulation of hyperelastic behaviour in aneurysm models. Lecture Notes in Computational Vision and Biomechanics, 27, 937-944. https://doi.org/10.1007/978-3-319-68195-5_102
Roh, C., Lee, J., & Kang, C. K. (2016). Physical properties of PDMS (polydimethylsiloxane) microfluidic devices on fluid behaviors: Various diameters and shapes of periodically-embedded microstructures. Materials, 9(10), Article 836. https://doi.org/10.3390/ma9100836
Sattarian, M., & Ghassemi, A. (2019). Identifying the poly methyl methacrylate behavior during free thermoforming using experimental tests and numerical simulation. Journal of Theoretical and Applied Mechanics, 57(4), 909-921. https://doi.org/10.15632/jtam-pl/112414
Shahzad, M., Kamran, A., Siddiqui, M. Z., & Farhan, M. (2015). Mechanical characterization and FE modelling of a hyperelastic material. Materials Research, 18(5), 918-924. https://doi.org/10.1590/1516-1439.320414
Souza, A., Marques, E., Balsa, C., & Ribeiro, J. (2020). Characterization of shear strain on PDMS: Numerical and experimental approaches. Applied Sciences, 10(9), Article 3322. https://doi.org/10.3390/app10093322
Subhani, P. M., & Kumar, R. K. (2009). A new stored energy function for rubber like materials for low strains. Mechanics of Advanced Materials and Structures, 16(5), 402-416. https://doi.org/10.1080/15376490902781167
Sugihardjo, H., Tavio, T., & Lesmana, Y. (2018). FE model of low grade rubber for modeling housing’s low-cost rubber base isolators. Civil Engineering Journal, 4(1), 24-45. https://doi.org/10.28991/cej-030966
SYSTEMES, D. (2021). Mesh Quality Checks. DASSAULT SYSTEMES. https://help.solidworks.com/2021/english/SolidWorks/cworks/c_Mesh_Quality_Checks.htm#:~:text=A good-quality mesh has,Aspect ratio of all elements
Tansel, D. Z., Brenneman, J., Fedder, G. K., & Panat, R. (2020). Mechanical characterization of polydimethylsiloxane (PDMS) exposed to thermal histories up to 300 C in a vacuum environment. Journal of Micromechanics and Microengineering, 30(6), Article 67001. https://doi.org/10.1088/1361-6439/ab82f4
Wineman, A. (2005). Some results for generalized neo-Hookean elastic materials. International Journal of Non-Linear Mechanics, 40(2), 271-279. https://doi.org/https://doi.org/10.1016/j.ijnonlinmec.2004.05.007
Wriggers, P. (2008). Nonlinear Finite Element Methods. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-71001-1
Xue, L., Pham, J. T., Iturri, J., & Del Campo, A. (2016). Stick-slip friction of PDMS surfaces for bioinspired adhesives. Langmuir, 32(10), 2428-2435. https://doi.org/10.1021/acs.langmuir.6b00513
Yu, Y. S., & Zhao, Y. P. (2009). Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney-Rivlin and linear elastic constitutive models. Journal of Colloid and Interface Science, 332(2), 467-476. https://doi.org/10.1016/j.jcis.2008.12.054
Zulfiqar, S., Saad, A. A., Chek, M. W., Sharif, M. F. M., Samsudin, Z., & Ali, M. Y. T. (2020). Structural and random vibration analysis of LEDs conductive polymer interconnections. IOP Conference Series: Materials Science and Engineering, 815, Article 012003. https://doi.org/10.1088/1757-899X/815/1/012003
Zulfiqar, S, Saad, A. A., Ahmad, Z., Yusof, F., & Fakpan, K. (2022). Analysis and characterization of polydimethylsiloxane (PDMS) substrate by using uniaxial tensile test and Mooney-Rivlin Hyper-elastic model. Journal of Advanced Manufacturing Technology, 16(1), 61-72.
Zulfiqar, S., Saad, A. A., Ahmad, Z., Yusof, F., & Bachok, Z. (2021). Structural analysis and material characterization of silver conductive ink for stretchable electronics. International Journal of Integrated Engineering, 13(7), 128-135.
ISSN 0128-7680
e-ISSN 2231-8526