e-ISSN 2231-8526
ISSN 0128-7680
Noor Fauziyah Ishak, Nur Hidayati Othman, Najihah Jamil, Nur Hashimah Alias, Fauziah Marpani, Munawar Zaman Shahruddin, Lau Woei Jye and Ahmad Fauzi Ismail
Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023
DOI: https://doi.org/10.47836/pjst.31.5.23
Keywords: 2D nanofillers, gas separation, mixed matrix membranes, MoS2, rGO, ZIF-8
Published on: 31 July 2023
Modifying polymeric membranes using nanofiller is a promising method to enhance gas permeability and selectivity performance. This work used two types of ZIF-8 functionalized-2D nanofillers to fabricate polyethersulfone mixed matrix membranes. The rGO/ZIF-8 and MoS2/ZIF-8 nanofillers were first synthesised and characterised using FTIR and XRD. Then, 10 wt% of each nanofillers was added to the PES solution. TGA analysis indicates that MMMs containing rGO/ZIF-8 and MoS2 /ZIF-8 exhibit improved thermal stability. No additional peaks in FTIR and XRD were observed in the MMMs, indicating that the 2D nanofillers were compatible with the PES matrix. The MMMs show significantly enhanced gas separation properties where the highest selectivity was observed for 10 wt%PRG/Pebax membrane of 35.71 with CO2 permeability of 611 barrer and CH4 permeability of 17.11 barrer. These results confirm the possibility of using 2D nanofillers to develop high-performance membranes for gas separation.
Akhair, S. S. M., Harun, Z., Jamalludin, M. R., Shuhor, M. F., Kamarudin, N. H., Yunos, M. Z., Ahmad, A., & Azhar, M. F. H. (2017). Polymer mixed matrix membrane with graphene oxide for humic acid performances. Chemical Engineering Transactions, 56, 697-702. https://doi.org/10.3303/CET1756117
Amedi, H. R., & Aghajani, M. (2017). Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application. Microporous and Mesoporous Materials, 247, 124-135. https://doi.org/10.1016/j.micromeso.2017.04.001
Cheshomi, N., Pakizeh, M., & Namvar-Mahboub, M. (2018). Preparation and characterization of TiO2/Pebax/(PSf-PES) thin film nanocomposite membrane for humic acid removal from water. Polymers for Advanced Technologies, 29(4), 1303-1312. https://doi.org/10.1002/pat.4242
Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V., & Liu, J. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 520, 860-868. https://doi.org/10.1016/j.memsci.2016.08.059
Dong, L., Chen, M., Li, J., Shi, D., Dong, W., Li, X., & Bai, Y. (2016). Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 520, 801-811. doi: https://doi.org/10.1016/j.memsci.2016.08.043
Feijani, E. A., Tavassoli, A., Mahdavi, H., & Molavi, H. (2018). Effective gas separation through graphene oxide containing mixed matrix membranes. Journal of Applied Polymer Science, 135, Article 46271. https://doi.org/10.1002/app.46271
Feng, Y., Li, Y., Xu, M., Liu, S., & Yao, J. (2016). Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism. RSC Advances, 6(111), 109608-109612. https://doi.org/10.1039/C6RA23870J
Gao, D., Si, M., Li, J. Zhang, J., Zhang, Z., Yang, Z., & Xue, D. (2013). Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Research Letters, 8(1), 1-8. https://doi.org/10.1186/1556-276X-8-129
Garcia-Fayos, J., Balaguer, M., Baumann, S., & Serra, J. M. (2018). Dual-phase membrane based on LaCo0.2Ni0.4Fe0.4O3−x-Ce0.8Gd0.2O2−x composition for oxygen permeation under CO2/SO2-rich gas environments. Journal of Membrane Science, 548, 117-124. doi: https://doi.org/10.1016/j.memsci.2017.11.006
Hadi, A., Karimi-Sabet, J., Nikkho, S., & Dastbaz, A. (2021). Fabrication of ZIF-8/polyethersulfone (PES) mixed matrix hollow fiber membranes for O2/N2 separation. Chemical Papers, 75, 4129-4145. https://doi.org/10.1007/s11696-021-01642-7
Jamil, N., Othman, N. H., Alias, N. H., Shahruddin, M. Z., Roslan, R. A., Lau, W. J., & Ismail, A. F. (2019). Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. Journal of Solid State Chemistry, 270, 419-427. https://doi.org/10.1016/j.jssc.2018.11.028
Jusoh, N., Yeong, Y. F., Lau, K. K., & Shariff, A. M. (2016). Mixed matrix membranes comprising of ZIF-8 nanofillers for enhanced gas transport properties. Procedia Engineering, 148, 1259-1265. https://doi.org/10.1016/j.proeng.2016.06.499
Kamble, A. R., Patel, C. M., & Murthy, Z. V. P. (2021). A review on the recent advances in mixed matrix membranes for gas separation processes. Renewable and Sustainable Energy Reviews, 145, Article 111062. https://doi.org/10.1016/j.rser.2021.111062
Krishnan, G., Mohtar, S. S., Aziz, F., Jaafar, J., Yusof, N., Salleh, W. N. W., & Ismail, A. F. (2020). Mixed matrix composite membranes based on amination of reduced graphene oxide for CO2 separation: Effects of heating time and nanofiller loading. Korean Journal of Chemical Engineering, 37(12), 2287-2294. https://doi.org/10.1007/s11814-020-0649-4
Kumar, S., Sharma, V., Bhattacharyya, K., & Krishnan, V. (2016). Synergetic effect of MoS 2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 40(6), 5185-5197. https://doi.org/10.1039/C5NJ03595C
Lai, L. S., Yeong, Y. F., Lau, K. K., & Shariff, A. M. (2016). Effect of synthesis parameters on the formation of ZIF-8 under microwave-assisted solvothermal. Procedia Engineering, 148, 35-42. https://doi.org/10.1016/j.proeng.2016.06.481
Liu, G., Jin, W., & Xu, N. (2016). Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 55(43), 13384-13397. https://doi.org/10.1002/anie.201600438
Mei, X., Yang, S., Lu, P., Zhang, Y., & Zhang, J. (2020). Improving the selectivity of ZIF-8/Polysulfone-Mixed Matrix Membranes by Polydopamine Modification for H2/CO2 separation. Frontiers in Chemistry, 8, Article 528. https://doi.org/10.3389/fchem.2020.00528
Moghadam, F., & Park, H. B. (2019). 2D nanoporous materials: Membrane platform for gas and liquid separations. 2D Materials, 6(4), Article 042002. https://doi.org/10.1088/2053-1583/ab1519
Qu, P., Tang, H., Gao, Y., Zhang, L., & Wang, S. (2010). Polyethersulfone composite membrane blended with cellulose fibrils. BioResources, 5(4), 2323-2336.
Ries, L., Petit, E., Michel, T., Diogo, C. C., Gervais, C., Salameh, C., Bechelany, M., Balme, S., Miele, P., Onofrio, N., & Voiry, D. (2019). Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nature Materials, 18(10), 1112-1117. https://doi.org/10.1038/s41563-019-0464-7
Sainath, K., Modi, A., & Bellare, J. (2021). CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance. Chemical Engineering Journal Advances, 5, Article 100074. https://doi.org/10.1016/j.ceja.2020.100074
Shen, Y., Wang, H., Zhang, X., & Zhang, Y. (2016). MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 8(35), 23371-23378. https://doi.org/10.1021/acsami.6b07153
Wang, H., Wang, Y., Jia, A., Wang, C., Wu, L., Yang, Y., & Wang, Y. (2017). A novel bifunctional Pd–ZIF-8/rGO catalyst with spatially separated active sites for the tandem Knoevenagel condensation–reduction reaction. Catalysis Science & Technology, 7(23), 5572-5584. https://doi.org/10.1039/C7CY01725A
Zainuddin, M., F., Raikhan, N. N. H., Othman, N. H., & Abdullah, W. F. H. (2017, February 15-16). Synthesis of reduced Graphene Oxide (rGO) using different treatments of Graphene Oxide (GO). [Paper presentation]. IOP Conference Series: Materials Science and Engineering, Putrajaya, Malaysia. https://doi.org/10.1088/1757-899X/358/1/012046
ISSN 0128-7680
e-ISSN 2231-8526