e-ISSN 2231-8526
ISSN 0128-7680
Lin Jian Wen, Mohd Shahrimie Mohd Asaari and Stijn Dhondt
Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023
DOI: https://doi.org/10.47836/pjst.31.4.13
Keywords: Analysis of variance fisher’s test, hyperspectral imaging, plant phenotyping, principal component analysis, standard normal variate
Published on: 3 July 2023
Hyperspectral Imaging (HSI) is one of the emerging techniques used in plant phenotyping as it carries abundant information and is non-invasive to plants. However, factors like illumination effect and high-dimensional spectral features need to be solved to attain higher accuracy of plant trait analysis. This research explored and analysed spectral normalisation and dimensionality reduction methods. The focus of this paper is twofold; the first objective was to explore the Standard Normal Variate (SNV), Least Absolute Deviations (L1) and Least Squares (L2) normalisation for spectral correction. The second objective was to explore the feasibility of Principal Component Analysis (PCA) and Analysis of Variance Fisher’s Test (ANOVA F-test) for spectral dimensionality reduction in spectral discriminative modelling. The analysis techniques were validated with HSI data of maise plants for early detection of water deficit stress response. Results showed that SNV performed the best among the three normalisation methods. Besides, ANOVA F-test outperformed PCA for the band selection method as it improved the trait assessment on the water deficit response of maise plants.
Abenina, M. I. A., Maja, J. M., Cutulle, M., Melgar, J. C., & Liu, H. (2022). Prediction of potassium in peach leaves using hyperspectral imaging and multivariate analysis. AgriEngineering, 4(2), 400-413. https://doi.org/10.3390/agriengineering4020027
Andaryani, S., Trolle, D., & Asl, A. M. (2019). Application of hyperion data for investigating agriculture field stress to drought conditions. EasyChair.
Asaari, M. S. M., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121-138. https://doi.org/10.1016/j.isprsjprs.2018.02.003
Asaari, M. S. M., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2019). Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture, 162, 749-758. https://doi.org/10.1016/j.compag.2019.05.018
Balachandran, S., Hurry, V. M., Kelley, S. E., Osmond, C. B., Robinson, S. A., Rohozinski, J., Seaton, G. G. R., & Sims, D. A. (1997). Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiologia Plantarum, 100(2), 203-213. https://doi.org/10.1111/j.1399-3054.1997.tb04776.x
Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98-111. https://doi.org/10.1016/j.isprsjprs.2014.03.016
Calzone, A., Cotrozzi, L., Lorenzini, G., Nali, C., & Pellegrini, E. (2021). Hyperspectral detection and monitoring of salt stress in pomegranate cultivars. Agronomy, 11(6). https://doi.org/10.3390/agronomy11061038
Chaerle, L., & van der Straeten, D. (2000). Imaging techniques and the early detection of plant stress. Trends in Plant Science, 5(11), 495-501. https://doi.org/10.1016/S1360-1385(00)01781-7
Feng, F., Zhang, Y., Zhang, J., & Liu, B. (2022). Small sample hyperspectral image classification based on cascade fusion of mixed spatial-spectral features and second-order pooling. Remote Sensing, 14(3), Article 505. https://doi.org/10.3390/rs14030505
Fernández, C. I., Leblon, B., Wang, J., Haddadi, A., & Wang, K. (2022). Cucumber powdery mildew detection using hyperspectral data. Canadian Journal of Plant Science, 102(1), 20–32. https://doi.org/10.1139/cjps-2021-0148
Fletcher, R. S., & Turley, R. B. (2018). Comparing Canopy Hyperspectral Reflectance Properties of <i>Palmer amaranth</i> to Okra and Super-Okra Leaf Cotton. American Journal of Plant Sciences, 09(13), 2708–2718. https://doi.org/10.4236/ajps.2018.913197
Gandhi, G. M., Parthiban, S., Thummalu, N., & Christy, A. (2015). Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District. Procedia Computer Science, 57, 1199–1210. https://doi.org/10.1016/j.procs.2015.07.415
Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625-632. https://doi.org/10.1016/j.compag.2016.07.028
Geladi, P., Burger, J., & Lestander, T. (2004). Hyperspectral imaging: Calibration problems and solutions. Chemometrics and Intelligent Laboratory Systems, 72(2), 209-217. https://doi.org/10.1016/j.chemolab.2004.01.023
Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55-63. https://doi.org/10.1109/TIT.1968.1054102
Ihuoma, S. O., & Madramootoo, C. A. (2019). Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Computers and Electronics in Agriculture, 163, Article 104860. https://doi.org/10.1016/j.compag.2019.104860
Isaksson, T., & Næs, T. (1988). The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR Spectroscopy. Applied Spectroscopy, 42(7), 1273–1284. https://doi.org/10.1366/0003702884429869
Kastberger, G. & Stachl, R. (2003). Infrared imaging technology and biological applications. Behaviour Research Methods, Instruments & Computers, 35(3), 429-439. https://doi.org/10.3758/BF03195520
Li, X., Li, R., MengyuWang, Liu, Y., Zhang, B., & Zhou, J. (2018). Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables. Hyperspectral Imaging in Agriculture, Food and Environment, 28–63. https://doi.org/10.1016/j.colsurfa.2011.12.014
Liu, J., Han, J., Chen, X., Shi, L., & Zhang, L. (2019). Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117202. https://doi.org/10.1016/j.saa.2019.117202
Lohaus, G., Heldt, H. W., & Osmond, C. B. (2000). Infection with phloem limited abutilon mosaic virus causes localized carbohydrate accumulation in leaves of abutilon striatum: relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction. Plant Biology, 2(2), 161-167. https://doi.org/10.1055/s-2000-9461
Mishra, P., Lohumi, S., Ahmad Khan, H., & Nordon, A. (2020). Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Computers and Electronics in Agriculture, 178, Article 105780. https://doi.org/10.1016/j.compag.2020.105780
Mishra, P., Polder, G., Gowen, A., Rutledge, D. N., & Roger, J. M. (2020). Utilising variable sorting for normalisation to correct illumination effects in close-range spectral images of potato plants. Biosystems Engineering, 197, 318–323. https://doi.org/10.1016/j.biosystemseng.2020.07.010
Mohd Asaari, M. S., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121–138. https://doi.org/10.1016/j.isprsjprs.2018.02.003
Nilsson, H. E. (1995). Remote sensing and image analysis in plant. Annual Review Phytopathol, 15, 489-527.
Ortaç, G., Bilgi, A. S., Taşdemir, K., & Kalkan, H. (2016). A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 130, 38-47. https://doi.org/10.1016/j.compag.2016.10.001
Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 8, Article 1348. https://doi.org/10.3389/fpls.2017.01348
Ranjan, S., Nayak, D. R., Kumar, K. S., Dash, R., & Majhi, B. (2017). Hyperspectral image classification: A k-means clustering based approach. 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), 1–7. https://doi.org/10.1109/ICACCS.2017.8014707
Ren, G., Wang, Y., Ning, J., & Zhang, Z. (2020). Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 237, 118407. https://doi.org/10.1016/j.saa.2020.118407
Sensing, R., Analysis, I., & Plant, I. N. (1995). REMOTE SENSING AND IMAGE ANALYSIS IN PLANT. Annual Review Phytopathol, 15, 489–527.
Shaikh, M. S., Jaferzadeh, K., Thörnberg, B., & Casselgren, J. (2021). Calibration of a hyper-spectral imaging system using a low-cost reference. Sensors, 21(11), Article 3738. https://doi.org/10.3390/s21113738
Vigneau, N., Ecarnot, M., Rabatel, G., & Roumet, P. (2011). Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Research, 122(1), 25–31. https://doi.org/10.1016/j.fcr.2011.02.003
Vu, H., Tachtatzis, C., Murray, P., Harle, D., Dao, T. K., Le, T. L., Andonovic, I., & Marshall, S. (n.d.). Rice Seed Varietal Purity Inspection using Hyperspectral Imaging.
Witteveen, M., Sterenborg, H. J. C. M., van Leeuwen, T. G., Aalders, M. C. G., Ruers, T. J. M., & Post, A. L. (2022). Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging. Journal of Biomedical Optics, 27(10). https://doi.org/10.1117/1.JBO.27.10.106003
Yang, W., Duan, L., Chen, G., Xiong, L., & Liu, Q. (2013). Plant phenomics and high-throughput phenotyping: Accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 16(2), 180-187. https://doi.org/10.1016/j.pbi.2013.03.005
Zhuang, L., & Ng, M. K. (2020). Hyperspectral mixed noise removal by ℓ1-norm-based subspace representation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1143-1157. https://doi.org/10.1109/JSTARS.2020.2979801
ISSN 0128-7680
e-ISSN 2231-8526