PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (4) Jul. 2023 / JST-3826-2022

 

Spectral Correction and Dimensionality Reduction of Hyperspectral Images for Plant Water Stress Assessment

Lin Jian Wen, Mohd Shahrimie Mohd Asaari and Stijn Dhondt

Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023

DOI: https://doi.org/10.47836/pjst.31.4.13

Keywords: Analysis of variance fisher’s test, hyperspectral imaging, plant phenotyping, principal component analysis, standard normal variate

Published on: 3 July 2023

Hyperspectral Imaging (HSI) is one of the emerging techniques used in plant phenotyping as it carries abundant information and is non-invasive to plants. However, factors like illumination effect and high-dimensional spectral features need to be solved to attain higher accuracy of plant trait analysis. This research explored and analysed spectral normalisation and dimensionality reduction methods. The focus of this paper is twofold; the first objective was to explore the Standard Normal Variate (SNV), Least Absolute Deviations (L1) and Least Squares (L2) normalisation for spectral correction. The second objective was to explore the feasibility of Principal Component Analysis (PCA) and Analysis of Variance Fisher’s Test (ANOVA F-test) for spectral dimensionality reduction in spectral discriminative modelling. The analysis techniques were validated with HSI data of maise plants for early detection of water deficit stress response. Results showed that SNV performed the best among the three normalisation methods. Besides, ANOVA F-test outperformed PCA for the band selection method as it improved the trait assessment on the water deficit response of maise plants.

  • Abenina, M. I. A., Maja, J. M., Cutulle, M., Melgar, J. C., & Liu, H. (2022). Prediction of potassium in peach leaves using hyperspectral imaging and multivariate analysis. AgriEngineering, 4(2), 400-413. https://doi.org/10.3390/agriengineering4020027

  • Andaryani, S., Trolle, D., & Asl, A. M. (2019). Application of hyperion data for investigating agriculture field stress to drought conditions. EasyChair.

  • Asaari, M. S. M., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121-138. https://doi.org/10.1016/j.isprsjprs.2018.02.003

  • Asaari, M. S. M., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2019). Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture, 162, 749-758. https://doi.org/10.1016/j.compag.2019.05.018

  • Balachandran, S., Hurry, V. M., Kelley, S. E., Osmond, C. B., Robinson, S. A., Rohozinski, J., Seaton, G. G. R., & Sims, D. A. (1997). Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiologia Plantarum, 100(2), 203-213. https://doi.org/10.1111/j.1399-3054.1997.tb04776.x

  • Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98-111. https://doi.org/10.1016/j.isprsjprs.2014.03.016

  • Calzone, A., Cotrozzi, L., Lorenzini, G., Nali, C., & Pellegrini, E. (2021). Hyperspectral detection and monitoring of salt stress in pomegranate cultivars. Agronomy, 11(6). https://doi.org/10.3390/agronomy11061038

  • Chaerle, L., & van der Straeten, D. (2000). Imaging techniques and the early detection of plant stress. Trends in Plant Science, 5(11), 495-501. https://doi.org/10.1016/S1360-1385(00)01781-7

  • Feng, F., Zhang, Y., Zhang, J., & Liu, B. (2022). Small sample hyperspectral image classification based on cascade fusion of mixed spatial-spectral features and second-order pooling. Remote Sensing, 14(3), Article 505. https://doi.org/10.3390/rs14030505

  • Fernández, C. I., Leblon, B., Wang, J., Haddadi, A., & Wang, K. (2022). Cucumber powdery mildew detection using hyperspectral data. Canadian Journal of Plant Science, 102(1), 20–32. https://doi.org/10.1139/cjps-2021-0148

  • Fletcher, R. S., & Turley, R. B. (2018). Comparing Canopy Hyperspectral Reflectance Properties of <i>Palmer amaranth</i> to Okra and Super-Okra Leaf Cotton. American Journal of Plant Sciences, 09(13), 2708–2718. https://doi.org/10.4236/ajps.2018.913197

  • Gandhi, G. M., Parthiban, S., Thummalu, N., & Christy, A. (2015). Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District. Procedia Computer Science, 57, 1199–1210. https://doi.org/10.1016/j.procs.2015.07.415

  • Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625-632. https://doi.org/10.1016/j.compag.2016.07.028

  • Geladi, P., Burger, J., & Lestander, T. (2004). Hyperspectral imaging: Calibration problems and solutions. Chemometrics and Intelligent Laboratory Systems, 72(2), 209-217. https://doi.org/10.1016/j.chemolab.2004.01.023

  • Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55-63. https://doi.org/10.1109/TIT.1968.1054102

  • Ihuoma, S. O., & Madramootoo, C. A. (2019). Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Computers and Electronics in Agriculture, 163, Article 104860. https://doi.org/10.1016/j.compag.2019.104860

  • Isaksson, T., & Næs, T. (1988). The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR Spectroscopy. Applied Spectroscopy, 42(7), 1273–1284. https://doi.org/10.1366/0003702884429869

  • Kastberger, G. & Stachl, R. (2003). Infrared imaging technology and biological applications. Behaviour Research Methods, Instruments & Computers, 35(3), 429-439. https://doi.org/10.3758/BF03195520

  • Li, X., Li, R., MengyuWang, Liu, Y., Zhang, B., & Zhou, J. (2018). Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables. Hyperspectral Imaging in Agriculture, Food and Environment, 28–63. https://doi.org/10.1016/j.colsurfa.2011.12.014

  • Liu, J., Han, J., Chen, X., Shi, L., & Zhang, L. (2019). Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117202. https://doi.org/10.1016/j.saa.2019.117202

  • Lohaus, G., Heldt, H. W., & Osmond, C. B. (2000). Infection with phloem limited abutilon mosaic virus causes localized carbohydrate accumulation in leaves of abutilon striatum: relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction. Plant Biology, 2(2), 161-167. https://doi.org/10.1055/s-2000-9461

  • Mishra, P., Lohumi, S., Ahmad Khan, H., & Nordon, A. (2020). Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Computers and Electronics in Agriculture, 178, Article 105780. https://doi.org/10.1016/j.compag.2020.105780

  • Mishra, P., Polder, G., Gowen, A., Rutledge, D. N., & Roger, J. M. (2020). Utilising variable sorting for normalisation to correct illumination effects in close-range spectral images of potato plants. Biosystems Engineering, 197, 318–323. https://doi.org/10.1016/j.biosystemseng.2020.07.010

  • Mohd Asaari, M. S., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121–138. https://doi.org/10.1016/j.isprsjprs.2018.02.003

  • Nilsson, H. E. (1995). Remote sensing and image analysis in plant. Annual Review Phytopathol, 15, 489-527.

  • Ortaç, G., Bilgi, A. S., Taşdemir, K., & Kalkan, H. (2016). A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 130, 38-47. https://doi.org/10.1016/j.compag.2016.10.001

  • Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 8, Article 1348. https://doi.org/10.3389/fpls.2017.01348

  • Ranjan, S., Nayak, D. R., Kumar, K. S., Dash, R., & Majhi, B. (2017). Hyperspectral image classification: A k-means clustering based approach. 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), 1–7. https://doi.org/10.1109/ICACCS.2017.8014707

  • Ren, G., Wang, Y., Ning, J., & Zhang, Z. (2020). Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 237, 118407. https://doi.org/10.1016/j.saa.2020.118407

  • Sensing, R., Analysis, I., & Plant, I. N. (1995). REMOTE SENSING AND IMAGE ANALYSIS IN PLANT. Annual Review Phytopathol, 15, 489–527.

  • Shaikh, M. S., Jaferzadeh, K., Thörnberg, B., & Casselgren, J. (2021). Calibration of a hyper-spectral imaging system using a low-cost reference. Sensors, 21(11), Article 3738. https://doi.org/10.3390/s21113738

  • Vigneau, N., Ecarnot, M., Rabatel, G., & Roumet, P. (2011). Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Research, 122(1), 25–31. https://doi.org/10.1016/j.fcr.2011.02.003

  • Vu, H., Tachtatzis, C., Murray, P., Harle, D., Dao, T. K., Le, T. L., Andonovic, I., & Marshall, S. (n.d.). Rice Seed Varietal Purity Inspection using Hyperspectral Imaging.

  • Witteveen, M., Sterenborg, H. J. C. M., van Leeuwen, T. G., Aalders, M. C. G., Ruers, T. J. M., & Post, A. L. (2022). Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging. Journal of Biomedical Optics, 27(10). https://doi.org/10.1117/1.JBO.27.10.106003

  • Yang, W., Duan, L., Chen, G., Xiong, L., & Liu, Q. (2013). Plant phenomics and high-throughput phenotyping: Accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 16(2), 180-187. https://doi.org/10.1016/j.pbi.2013.03.005

  • Zhuang, L., & Ng, M. K. (2020). Hyperspectral mixed noise removal by ℓ1-norm-based subspace representation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1143-1157. https://doi.org/10.1109/JSTARS.2020.2979801

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3826-2022

Download Full Article PDF

Share this article

Related Articles