e-ISSN 2231-8526
ISSN 0128-7680
Nur Auni Izzati Jusoh, Nur Aini Sabrin Manssor, Praveena Nair Rajendra and Jamaluddin Mahmud
Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023
DOI: https://doi.org/10.47836/pjst.31.4.17
Keywords: Biocomposite material, epoxy and silicone rubber, moringa oleifera barks, tensile properties
Published on: 3 July 2023
The moringa oleifera bark (MOB) is well-known for its medicinal properties and various benefits, where combining it with polymers could produce a new superior composite material for medicinal applications. Because this is a novel composite material, even basic information on how the MOB fibres altered the tensile properties of epoxy and silicone rubber is still lacking. Therefore, this study investigated the tensile and deformation behaviour of two newly introduced composite materials, MOB fibre reinforced into epoxy and silicone rubber. ASTM D3039 and ASTM D412 were adapted to prepare the hard and soft composite specimens (0, 4, 8, 12 and 16wt%.), respectively. T-test was conducted to determine the significant difference. The results show that the tensile modulus of MOB-epoxy biocomposite improved from 1240 MPa to 1668 MPa (35% increment) when the fibre content was increased to 16wt%. For MOB–silicone biocomposite, a similar trend was observed where the tensile modulus also increased from 0.076 MPa to 0.12 MPa (64% increment) as the fibre concentration increased from 0 to 16wt%. In conclusion, reinforcing MOB fibre affected the stiffness of silicone rubber more than epoxy; but affected the elongation of epoxy more than silicone rubber. Based on a t-score of 17.5, a significant difference is observed in how reinforcing MOB at various wt% affected the increment of tensile modulus for both hard and soft composites. Finally, the determined tensile modulus compared to other materials could be useful for benchmarking and exploring potential applications.
Ahmed, M. M., Dhakal, H. N., Zhang, Z. Y., Barouni, A., & Zahari, R. (2021). Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Composite Structures, 259, Article 113496. https://doi.org/10.1016/j.compstruct.2020.113496
Ali Raza, M., Westwood, A., Stirling, C., Brydson, R., & Hondow, N. (2012). Effect of nanosized carbon black on the morphology, transport, and mechanical properties of rubbery epoxy and silicone composites. Journal of Applied Polymer Science, 126(2), 641–652. https://doi.org/10.1002/app.36655
Alshahrani, H., & Arun Prakash, V. R. (2022). Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: A greener material for cleaner production. Journal of Cleaner Production, 374, 133931. https://doi.org/10.1016/j.jclepro.2022.133931
Arbelaiz, A., Txueka, U., Mezo, I., & Orue, A. (2020). Biocomposites based on poly(lactic acid) matrix and reinforced with lignocellulosic fibers: The effect of fiber type and matrix modification. Journal of Natural Fibers, 19(1), 1–14. https://doi.org/10.1080/15440478.2020.1726247
Atmakuri, A., Palevicius, A., Vilkauskas, A., & Janusas, G. (2022). Numerical and experimental analysis of mechanical properties of natural-fiber-reinforced hybrid polymer composites and the effect on matrix material. Polymers, 14(13), 2612. https://doi.org/10.3390/polym14132612
Azmi, N. N., Hussain, A. K., & Mahmud, J. (2017). Kenaf silicone biocomposites: Synthesis and its hyperelastic behaviour. Materials Science Forum, 900, 12-16. https://doi.org/10.4028/www.scientific.net/MSF.900.12
Bae, J. H., & Chang, S. H. (2013). A study on the mechanical behavior of silicone-organically modified montmorillonite composite under human body simulated environment. Composites Science and Technology, 85, 90-97. https://doi.org/10.1016/j.compscitech.2013.06.008
Bahrain, S. H. K., & Mahmud, J. (2019). Arenga pinnata - Silicone biocomposite: Quantifying its tensile properties using neo-hookean model. International Journal of Recent Technology and Engineering, 8(1), 3186-3190.
Bahrain, S. H.K, Masdek, N. R., Mahmud, J., Mohammed, M. N., Sapuan, S. M., Ilyas, R. A., Mohamed, A., Shamseldin, M. A., Abdelrahman, A., & Asyraf, M. R. (2022). Morphological, physical, and mechanical properties of sugar-palm (Arenga pinnata (Wurmb) merr.)-reinforced silicone rubber biocomposites. Materials, 15(12), 4062. https://doi.org/10.3390/ma15124062
Batu, T., & Lemu, H. G. (2020). Investigation of mechanical properties of false banana/glass fiber reinforced hybrid composite materials. Results in Materials, 8, 100152. https://doi.org/10.1016/j.rinma.2020.100152
Benevides, R. O., & Nunes, L. C. S. (2015). Mechanical behavior of the alumina-filled silicone rubber under pure shear at finite strain. Mechanics of Materials, 85, 57-65. https://doi.org/10.1016/j.mechmat.2015.02.011
Bharath, K. N., & Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Science and Engineering of Composite Materials, 23(2), 123-133. https://doi.org/10.1515/secm-2014-0088
Castilho, M., Hochleitner, G., Wilson, W., Van Rietbergen, B., Dalton, P. D., Groll, J., Malda, J., & Ito, K. (2018). Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-19502-y
Chen, K., & Weiland, J. D. (2011). Mechanical properties of orbital fat and its encapsulating connective tissue. Journal of Biomechanical Engineering, 133(6), Article 064505. https://doi.org/10.1115/1.4004289
Fauzi, F. A., Ghazalli, Z., & Siregar, J. P. (2016). Effect of various kenaf fiber content on the mechanical properties of composites. Journal of Mechanical Engineering and Sciences, 10(3), 2226-2233. https://doi.org/10.15282/jmes.10.3.2016.2.0208
George, K. S., Revathi, K. B., Deepa, N., Sheregar, C. P., Ashwini, T. S., & Das, S. (2016). A study on the potential of moringa leaf and bark extract in bioremediation of heavy metals from water collected from various lakes in Bangalore. Procedia Environmental Sciences, 35, 869-880. https://doi.org/10.1016/j.proenv.2016.07.104
Halim, Z. A. A., Ahmad, N., Yajid, M. A. M., & Hamdan, H. (2022). Thermal insulation performance of silicone rubber / silica aerogel composite. Materials Chemistry and Physics, 276, Article 125359. https://doi.org/10.1016/j.matchemphys.2021.125359
Hu, Q., Bai, X., Zhang, C., Zeng, X., Huang, Z., Li, J., Li, J., & Zhang, Y. (2022). Oriented BN/Silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Composites Part A: Applied Science and Manufacturing, 152, Article 106681. https://doi.org/10.1016/j.compositesa.2021.106681
Huang, J. K., & Young, W. B. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 166, 272-283. https://doi.org/10.1016/j.compositesb.2018.12.013
Hudson, Z. J., & Graves, W. R. (2021). Tensile strength of the bark of Dirca L. and other genera of the Thymelaeaceae1. The Journal of the Torrey Botanical Society, 149(1), 1-7. https://doi.org/10.3159/torrey-d-21-00004.1
Ismail, A. M., Mahmoud, K. R., & Abd-El Salam, M. H. (2015). Electrical conductivity and positron annihilation characteristics of ternary silicone rubber/carbon black/TiB2 nanocomposites. Polymer Testing, 48, 37-43. https://doi.org/10.1016/j.polymertesting.2015.09.006
Jones, R. M. (1999). Mechanics of Composite Materials (2nd ed.). CRC Press.
Jusoh, A. F., Rejab, M. R. M., Siregar, J. P., & Bachtiar, D. (2016). Natural fiber reinforced composites: A review on potential for corrugated core of sandwich structures. MATEC Web of Conferences, 74, 7-11. https://doi.org/10.1051/matecconf/20167400033
Keya, K. N., Kona, N. A., Koly, F. A., Maraz, K. M., Islam, M. N., & Khan, R. A. (2019). Natural fiber reinforced polymer composites: History, types, advantages, and applications. Materials Engineering Research, 1(2), 69-87. https://doi.org/10.25082/mer.2019.02.006
Kilic, U., Sherif, M. M., & Ozbulut, O. E. (2019). Tensile properties of graphene nanoplatelets/epoxy composites fabricated by various dispersion techniques. Polymer Testing, 76, 181-191. https://doi.org/10.1016/j.polymertesting.2019.03.028
Koushki, P., Kwok, T. H., Hof, L., & Wuthrich, R. (2020). Reinforcing silicone with hemp fiber for additive manufacturing. Composites Science and Technology, 194, Article 108139. https://doi.org/10.1016/j.compscitech.2020.108139
Kumar, A., Verma, R. P., Avikal, S., & Singh, K. (2021). Mechanical characterization of epoxy composite reinforced with alkali treated walnut shell powder. Materials Today: Proceedings, 46(20), 10642-10646. https://doi.org/10.1016/j.matpr.2021.01.383
Kumar, V., Alam, M. N., Manikkavel, A., & Park, S. S. (2022). Efficacy of graphitic allotrope’s surface area in silicone rubber-based composites for reverse piezo-electric actution: Nano effect. Sensors and Actuators, A: Physical, 336, Article 113411.
Manu, T., Nazmi, A., Shahri, B., Emerson, N., & Huber, T. (2022). Biocomposites: A review of materials and perception. Materials Today Communications, 31, 103308. https://doi.org/10.1016/j.mtcomm.2022.103308
Maria, M. (2013). Advanced composite materials of the future in aerospace industry. Incas Bulletin, 5(3), 139-150. https://doi.org/10.13111/2066-8201.2013.5.3.14
Muthalagu, R., Murugesan, J., Kumar, S. S., & Babu, B. S. (2020). Tensile attributes and material analysis of Kevlar and date palm fibers reinforced epoxy composites for automotive bumper applications. Materials Today: Proceedings, 46, 433-438. https://doi.org/10.1016/j.matpr.2020.09.777
Muthamma, M. V., Prabhu, S., Bubbly, S. G., & Gudennavar, S. B. (2021). Micro and nano Bi2O3 filled epoxy composites: Thermal, mechanical and γ-ray attenuation properties. In Applied Radiation and Isotopes (Vol. 174, p. 109780). Elsevier. https://doi.org/10.1016/j.apradiso.2021.109780
Obradović, V., Simić, D., Sejkot, P., Machalická, K. V., & Vokáč, M. (2021). Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites. Current Applied Physics, 26, 16-23. https://doi.org/10.1016/j.cap.2021.03.015
Padayachee, B., & Baijnath, H. (2020). An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. South African Journal of Botany, 129, 304-316. https://doi.org/10.1016/j.sajb.2019.08.021
Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
Rajeshkumar, G., Hariharan, V., Sathishkumar, T. P., Fiore, V., & Scalici, T. (2017). Synergistic effect of fiber content and length on mechanical and water absorption behaviors of Phoenix sp. fiber-reinforced epoxy composites. Journal of Industrial Textiles, 47(2), 211-232. https://doi.org/10.1177/1528083716639063
Rockwood, J. L., Anderson, B. G., & Casamatta, D. A. (2013). Potential uses of Moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations. International Journal of Phytotherapy Research, 3(2), 61-71.
Rudin, A., & Choi, P. (2013). The Elements of Polymer Science and Engineering (3rd ed.). Academic Press.
Safdari, V., Khodadadi, H., Hosseinihashemi, S. K., & Ganjian, E. (2011). The effects of poplar bark and wood content on the mechanical properties of wood-polypropylene composites. BioResources, 6(4), 5180-5192. https://doi.org/10.15376/biores.6.4.5180-5192
Sarath, P. S., Samson, S. V., Reghunath, R., Pandey, M. K., Haponiuk, J. T., Thomas, S., & George, S. C. (2020). Fabrication of exfoliated graphite reinforced silicone rubber composites-Mechanical, tribological and dielectric properties. Polymer Testing, 89, Article 106601. https://doi.org/10.1016/j.polymertesting.2020.106601
Tataru, G., Guibert, K., Labbé, M., Léger, R., Rouif, S., & Coqueret, X. (2020). Modification of flax fiber fabrics by radiation grafting: Application to epoxy thermosets and potentialities for silicone-natural fibers composites. Radiation Physics and Chemistry, 170, Article 108663. https://doi.org/10.1016/j.radphyschem.2019.108663
Yemele, M. C. N., Koubaa, A., Cloutier, A., Soulounganga, P., & Wolcott, M. (2010). Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites Part A: Applied Science and Manufacturing, 41(1), 131-137. https://doi.org/10.1016/j.compositesa.2009.06.005
Zaffer, M., Ahmad, S., Sharma, R., Mahajan, S., Gupta, A., & Agnihotri, R. K. (2014). Antibacterial activity of bark extracts of Moringa oleifera Lam. against some selected bacteria. Pakistan Journal of Pharmaceutical Sciences, 27(6), 1857-1862.
ISSN 0128-7680
e-ISSN 2231-8526