e-ISSN 2231-8526
ISSN 0128-7680
Jaya H. Dewan and Sudeep D. Thepade
Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023
DOI: https://doi.org/10.47836/pjst.31.5.06
Keywords: Color features, content-based image retrieval, Sauvola thresholding, Thepade’s Sorted Block Truncation Coding (SBTC)
Published on: 31 July 2023
Because of the tremendous growth in digital imaging, enhanced communication and storage technology, billions of images are captured, stored, and exchanged daily. Finding and searching for an image in a large collection is becoming challenging. The query by reference image retrieval (IR) technique aims to close the semantic gap between the query and retrieve images while improving performance. The primary goal of the work proposed here is to develop discriminative and descriptive features of the image with the minimum possible size. Here, the weighted feature fusion-based IR technique is proposed using Sauvola local thresholding (SLT) and Thepade’s Sorted Block Truncation Coding (SBTC) methods. The proposed technique is tested using two standard datasets with mean square error (MSE) as a distance measure and average retrieval accuracy (ARA) as a performance metric. The technique has contributed to the enhancement of ARA with the small and fixed-size image feature vector. The feature vector generated is much smaller than the image dimension and is used as a feature vector to represent the image for retrieval. Results prove that the proposed technique of SBTC 8-ary with 0.1 weight and SLT with 0.9 weight feature fusion gives better ARA than other techniques studied.
Abdel-Hakim, A. E., & Farag, A. A. (2006, June 17-22). CSIFT: A SIFT descriptor with color invariant characteristics. [Paper presentation]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, USA. https://doi.org/10.1109/CVPR.2006.95
Alahi, A., Ortiz, R., & Vandergheynst, P. (2012, June 16-21). FREAK: Fast retina keypoint. [Paper presentation]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA. https://doi.org/10.1109/CVPR.2012.6247715
Alhassan, A. K., & Alfaki, A. A. (2017, January 16-18). Color and texture fusion-based method for content-based image retrieval. [Paper presentation]. 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), Khartoum, Sudan. https://doi.org/10.1109/ICCCCEE.2017.7867649
Alkhawlani, M., Elmogy, M., & Elbakry, H. (2015). Content-based image retrieval using local features descriptors and bag-of-visual words. International Journal of Advanced Computer Science and Applications, 6(9), 212-219. https://doi.org/10.14569/IJACSA.2015.060929
Arandjelovic, R., & Zisserman, A. (2012, June 16-21). Three things everyone should know to improve object retrieval. [Paper presentation]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA. https://doi.org/10.1109/CVPR.2012.6248018
Baji, F., & Mocanu, M. (2018). Chain code approach for shape based image retrieval. Indian Journal of Science and Technology, 11(3), 1-17. https://doi.org/10.17485/ijst/2018/v11i3/119998
Bataineh, B., Abdullah, S. N. H. S., Omar, K., & Faidzul, M. (2011). Adaptive thresholding methods for documents image binarization. In J. F. Martinez-Trinidad, J. A. Carrasco-Oschoa, C. B. Y. Brants & E. R. Hancock (Eds.), Pattern recognition (pp. 230-239). Springer. https://doi.org/10.1007/978-3-642-21587-2_25
Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded up robust features. In A. Leonardis, H. Bischof & A. Pinz (Eds.), Computer vision ECCV 2006 (pp. 404-417). Springer. https://doi.org/10.1007/11744023_32
Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary robust independent elementary features. In K. Daniilidis, P. Maragos & N. Paragios (Eds.), Computer vision ECCV 2010 (pp. 778-792). Springer. https://doi.org/10.1007/978-3-642-15561-1_56
Cao, J., Huang, Y., Dai, Q., & Ling, W. K. (2021). Unsupervised trademark retrieval method based on attention mechanism. Sensors, 21(5), Article 1894. https://doi.org/10.3390/s21051894
Chen, Y. H., Chang, C. C., Lin, C. C., & Hsu, C. Y. (2018). Content-based color image retrieval using block truncation coding based on binary ant colony optimization. Symmetry, 11(1), Article 21. https://doi.org/10.3390/sym11010021
Cheung, W., & Hamarneh, G. (2007, April 12-15). N-SIFT: N-dimensional scale invariant feature transform for matching medical images. [Paper presentation]. 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, USA. https://doi.org/10.1109/ISBI.2007.356953
Dewan, J. H., & Thepade, S. D. (2021, March 5-7). Fusion based image retrieval using haralick moments and TSBTC features. [Paper presentation]. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India. https://doi.org/10.1109/ESCI50559.2021.9396833
Dhotre, D. R., & Bamnote, G. R. (2017, September 22-24). Multilevel haar wavelet transform and histogram usage in content based image retrieval system. [Paper presentation]. 2017 International Conference on Vision, Image and Signal Processing (ICVISP), Osaka, Japan. https://doi.org/10.1109/ICVISP.2017.34
Du, A., Wang, L., & Qin, J. (2019). Image retrieval based on colour and improved NMI texture features. Automatika: Časopis Za Automatiku, Mjerenje, Elektroniku, Računarstvo I Komunikacije, 60(4), 491-499. https://doi.org/10.1080/00051144.2019.1645977
Guo, J. M., & Liu, Y. F. (2014). Improved block truncation coding using optimized dot diffusion. IEEE Transactions on Image Processing, 23(3), 1269-1275. https://doi.org/10.1109/TIP.2013.2257812
Guo, J. M., & Prasetyo, H. (2015). Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Transactions on Image Processing, 24(3), 1010-1024. https://doi.org/10.1109/TIP.2014.2372619
Guo, J. M., Prasetyo, H., & Chen, J. H. (2015). Content-based image retrieval using error diffusion block truncation coding features. IEEE Transactions on Circuits and Systems for Video Technology, 25(3), 466-481. https://doi.org/10.1109/TCSVT.2014.2358011
Guo, J. M., Prasetyo, H., & Wang, N. J. (2015). Effective image retrieval system using dot-diffused block truncation coding features. IEEE Transactions on Multimedia, 17(9), 1576-1590. https://doi.org/10.1109/TMM.2015.2449234
Hadjadj, Z., Meziane, A., Cherfa, Y., Cheriet, M., & Setitra, I. (2016). ISauvola: Improved sauvola’s algorithm for document image binarization. In A. Campilho & F. Karray (Eds.), Image Analysis and Regocnition (pp. 737-745). https://doi.org/10.1007/978-3-319-41501-7_82
Han, J., & Ma, K. K. (2002). Fuzzy color histogram and its use in color image retrieval. IEEE Transactions on Image Processing, 11(8), 944-952. https://doi.org/10.1109/TIP.2002.801585
Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6(SMC-3), 610-621. https://doi.org/10.1109/TSMC.1973.4309314
Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Alvey Vision Conference, 15(50), 147-151.
Hua, J. Z., Liu, G. H., & Song, S. X. (2019). Content-based image retrieval using color volume histograms. International Journal of Pattern Recognition and Artificial Intelligence, 33(11), Article 1940010. https://doi.org/10.1142/S021800141940010X
Huang, J., Kumar, S. R., Mitra, M., Zhu, W. J., & Rabih, R. (1997, June 17-19). Image indexing using color correlograms. [Paper presentation]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Puerto Rico, USA. https://doi.org/10.1109/CVPR.1997.609412
Jabeen, S., Mehmood, Z., Mahmood, T., Saba, T., Rehman, A., & Mahmood, M. T. (2018). An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model. PloS One, 13(4), Article e0194526. https://doi.org/10.1371/journal.pone.0194526
Ji, Y., Wang, W., Lv, Y., & Zhou, W. (2020). Research on fabric image retrieval method based on multi-feature layered fusionon. Journal of Physics: Conference Series, 1549(5), Article 052038. https://doi.org/10.1088/1742-6596/1549/5/052038
Kayhan, N., & Fekri-Ershad, S. (2021). Content based image retrieval based on weighted fusion of texture and color features derived from modified local binary patterns and local neighborhood difference patterns. Multimedia Tools and Applications, 80(21-23), 32763-32790. https://doi.org/10.1007/s11042-021-11217-z
Ke, Y., & Sukthankar, R. (2004, June 27 - July 2). PCA-SIFT: A more distinctive representation for local image descriptors. [Paper presentation]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2, Washington, USA. https://doi.org/10.1109/CVPR.2004.1315206
Latif, A., Rasheed, A., Sajid, U., Ahmed, J., Ali, N., Ratyal, N. I., Zafar, B., Dar, S. H., Sajid, M., & Khalil, T. (2019). Content-based image retrieval and feature extraction: A comprehensive review. Mathematical Problems in Engineering, 2019, Article 9658350. https://doi.org/10.1155/2019/9658350
Lazzara, G., & Géraud, T. (2014). Efficient multiscale Sauvola’s binarization. International Journal on Document Analysis and Recognition (IJDAR), 17(2), 105-123. https://doi.org/10.1007/s10032-013-0209-0
Lee, J., Jin, R., Jain, A., & Tong, W. (2012). Image retrieval in forensics: Tattoo image database application. IEEE Multimedia, 19(1), 40-49. https://doi.org/10.1109/MMUL.2011.59
Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011, November 6-13). BRISK: Binary Robust invariant scalable keypoints. [Paper presentation]. 2011 International Conference on Computer Vision, Barcelona, Spain. https://doi.org/10.1109/ICCV.2011.6126542
Li, J., & Wang, J. Z. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1075–1088. https://doi.org/10.1109/TPAMI.2003.1227984
Loupias, E., Sebe, N., Bres, S., & Jolion, J. M. (2000, September 10-13). Wavelet-based salient points for image retrieval. [Paper presentation]. Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), Vancouver, Canada. https://doi.org/10.1109/ICIP.2000.899469
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837-842. https://doi.org/10.1109/34.531803
Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 22(10), 761-767. https://doi.org/https://doi.org/10.1016/j.imavis.2004.02.006
Mehmood, Z., Abbas, F., Mahmood, T., Javid, M. A., Rehman, A., & Nawaz, T. (2018). Content-based image retrieval based on visual words fusion versus features fusion of local and global features. Arabian Journal for Science and Engineering, 43(12), 7265-7284. https://doi.org/10.1007/s13369-018-3062-0
Mikolajczyk, K., & Schmid, C. (2001, July 7-14). Indexing based on scale invariant interest points. [Paper presentation]. Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, Canada. https://doi.org/10.1109/ICCV.2001.937561
Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In A. Heyden, G. Sparr, M. Nielsen & P. Johansen (Eds.), Computer vision – ECCV 2002 (pp. 128-142). Springer. https://doi.org/10.1007/3-540-47969-4_9
Mistry, Y., Ingole, D. T., & Ingole, M. D. (2016, April 28-30). Efficient content based image retrieval using transform and spatial feature level fusion. [Paper presentation]. 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), Hong Kong, China. https://doi.org/10.1109/ICCAR.2016.7486744
Müller, H. (2020, June 8-11). Medical image retrieval: applications and resources. [Paper presentation]. ICMR ‘20: Proceedings of the 2020 International Conference on Multimedia Retrieval, New York, USA. https://doi.org/10.1145/3372278.3390668
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012a). Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing, 21(5), 2874-2886. https://doi.org/10.1109/TIP.2012.2188809
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012b). Directional local extrema patterns: A new descriptor for content based image retrieval. International Journal of Multimedia Information Retrieval, 1(3), 191-203. https://doi.org/10.1007/s13735-012-0008-2
Nene, S. A., Nayar, S. K., & Murase, H. (n.d.). Columbia Object Image Library (COIL-20). Retrieved July 20, 2019, from http://www.cs.columbia.edu/CAVE/publications/pdfs/Nene_TR96.pdf
Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51-59. https://doi.org/10.1016/0031-3203(95)00067-4
Pass, G., Zabih, R., & Miller, J. (1996, November 18-22). Comparing images using color coherence vectors. [Paper presentation]. MM96: The Fourth ACM International Multimedia Conference, Massachusetts, USA. https://doi.org/10.1145/244130.244148
Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer vision - ECCV 2006 (pp. 430-443). Springer. https://doi.org/10.1007/11744023_34
Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011, November 6-13). ORB: An efficient alternative to SIFT or SURF. [Paper presentation]. 2011 International Conference on Computer Vision, Barcelona, Spain. https://doi.org/10.1109/ICCV.2011.6126544
Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. https://doi.org/10.1016/S0031-3203(99)00055-2
Shao, H., Wu, Y., Cui, W., & Zhang, J. (2008, November 18-21). Image retrieval based on MPEG-7 dominant color descriptor. [Paper presentation]. 2008 The 9th International Conference for Young Computer Scientists, Hunan China. https://doi.org/10.1109/ICYCS.2008.89
Shi, J., & Tomasi. (1994, June 21-23). Good features to track. [Paper presentation]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA. https://doi.org/10.1109/CVPR.1994.323794
Shifa, A., Afgan, M. S., Asghar, M. N., Fleury, M., Memon, I., Abdullah, S., & Rasheed, N. (2018). Joint crypto-stego scheme for enhanced image protection with nearest-centroid clustering. IEEE Access, 6, 16189-16206. https://doi.org/10.1109/ACCESS.2018.2815037
Singh, V. P., & Srivastava, R. (2018). Effective image retrieval based on hybrid features with weighted similarity measure and query image classification. International Journal of Computational Vision and Robotics, 8(2), Article 98. https://doi.org/10.1504/IJCVR.2018.091979
Smith, S. M., & Brady, J. M. (1997). SUSAN-A new approach to low level image processing. International Journal of Computer Vision, 23(1), 45-78. https://doi.org/10.1023/A:1007963824710
Srivastava, P., & Khare, A. (2018). Utilizing multiscale local binary pattern for content-based image retrieval. Multimedia Tools and Applications, 77(10), 12377-12403. https://doi.org/10.1007/s11042-017-4894-4
Sumana, I. J., Islam, M. M., Zhang, D., & Lu, G. (2008, October 8-10). Content based image retrieval using curvelet transform. [Paper presentation]. 2008 IEEE 10th Workshop on Multimedia Signal Processing, Cairns, Australia. https://doi.org/10.1109/MMSP.2008.4665041
Sun, J., & Wu, X. (2006, December 18-20). Chain code distribution-based image retrieval. [Paper presentation]. 2006 International Conference on Intelligent Information Hiding and Multimedia, California, USA . https://doi.org/10.1109/IIH-MSP.2006.264973
Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, 8(6), 460-473. https://doi.org/10.1109/TSMC.1978.4309999
Tarawneh, A. S., Hassanat, A. B. A., Celik, C., Chetverikov, D., Rahman, M. S., & Verma, C. (2018). Deep Face Image Retrieval: A Comparative Study with Dictionary Learning. ArXiv. http://arxiv.org/abs/1812.05490
Tunio, M. H., Memon, I., Mallah, G. A., Shaikh, N. A., Shaikh, R. A., & Magsi, Y. (2020, February 8-9). Automation of traffic control system using image morphological operations. [Paper presentation]. 2020 International Conference on Information Science and Communication Technology (ICISCT), Karachi, India. https://doi.org/10.1109/ICISCT49550.2020.9080051
Van De Sande, K., Gevers, T., & Snoek, C. (2010). Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1582-1596. https://doi.org/10.1109/TPAMI.2009.154
Varish, N., Pal, A. K., Hassan, R., Hasan, M. K., Khan, A., Parveen, N., Banerjee, D., Pellakuri, V., Haqis, A. U., & Memon, I. (2020). Image retrieval scheme using quantized bins of color image components and adaptive tetrolet transform. IEEE Access, 8, 117639-117665. https://doi.org/10.1109/ACCESS.2020.3003911
Wang, J., Wang, L., Liu, X., Ren, Y., & Yuan, Y. (2018). Color-based image retrieval using proximity space theory. Algorithms, 11(8), Article 115. https://doi.org/10.3390/a11080115
Wang, J. Z., Li, J., & Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947–963. https://doi.org/10.1109/34.955109
Xiaoling, W., & Kanglin, X. (2004, September 16). A novel direction chain code-based image retrieval. [Paper presentation]. The Fourth International Conference OnComputer and Information Technology, 2004. CIT ’04., Wuhan, China. https://doi.org/10.1109/CIT.2004.1357195
Yang, Z., Ge, Y., Huang, Z., & Xiong, C. (2021, March 26-28). Supervised hashing with kernel based on feature fusion for remote sensing image retrieval. [Paper presentation]. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China. https://doi.org/10.1109/ICBAIE52039.2021.9389931
Yu, G., & Morel, J. M. (2011). ASIFT: An algorithm for fully affine invariant comparison. Image Processing On Line, 1, 11-38. https://doi.org/10.5201/ipol.2011.my-asift
Yu, J., Qin, Z., Wan, T., & Zhang, X. (2013). Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing, 120, 355-364. https://doi.org/10.1016/j.neucom.2012.08.061
Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533-544. https://doi.org/10.1109/TIP.2009.2035882
Zhang, S., Tian, Q., Lu, K., Huang, Q., & Gao, W. (2013). Edge-SIFT: Discriminative binary descriptor for scalable partial-duplicate mobile search. IEEE Transactions on Image Processing, 22(7), 2889-2902. https://doi.org/10.1109/TIP.2013.2251650
ISSN 0128-7680
e-ISSN 2231-8526