PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (5) Aug. 2023 / JST-3688-2022

 

Image Retrieval Using Fusion of Sauvola and Thepade’s Sorted Block Truncation Coding-Based Color Features

Jaya H. Dewan and Sudeep D. Thepade

Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.06

Keywords: Color features, content-based image retrieval, Sauvola thresholding, Thepade’s Sorted Block Truncation Coding (SBTC)

Published on: 31 July 2023

Because of the tremendous growth in digital imaging, enhanced communication and storage technology, billions of images are captured, stored, and exchanged daily. Finding and searching for an image in a large collection is becoming challenging. The query by reference image retrieval (IR) technique aims to close the semantic gap between the query and retrieve images while improving performance. The primary goal of the work proposed here is to develop discriminative and descriptive features of the image with the minimum possible size. Here, the weighted feature fusion-based IR technique is proposed using Sauvola local thresholding (SLT) and Thepade’s Sorted Block Truncation Coding (SBTC) methods. The proposed technique is tested using two standard datasets with mean square error (MSE) as a distance measure and average retrieval accuracy (ARA) as a performance metric. The technique has contributed to the enhancement of ARA with the small and fixed-size image feature vector. The feature vector generated is much smaller than the image dimension and is used as a feature vector to represent the image for retrieval. Results prove that the proposed technique of SBTC 8-ary with 0.1 weight and SLT with 0.9 weight feature fusion gives better ARA than other techniques studied.

  • Abdel-Hakim, A. E., & Farag, A. A. (2006, June 17-22). CSIFT: A SIFT descriptor with color invariant characteristics. [Paper presentation]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, USA. https://doi.org/10.1109/CVPR.2006.95

  • Alahi, A., Ortiz, R., & Vandergheynst, P. (2012, June 16-21). FREAK: Fast retina keypoint. [Paper presentation]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA. https://doi.org/10.1109/CVPR.2012.6247715

  • Alhassan, A. K., & Alfaki, A. A. (2017, January 16-18). Color and texture fusion-based method for content-based image retrieval. [Paper presentation]. 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), Khartoum, Sudan. https://doi.org/10.1109/ICCCCEE.2017.7867649

  • Alkhawlani, M., Elmogy, M., & Elbakry, H. (2015). Content-based image retrieval using local features descriptors and bag-of-visual words. International Journal of Advanced Computer Science and Applications, 6(9), 212-219. https://doi.org/10.14569/IJACSA.2015.060929

  • Arandjelovic, R., & Zisserman, A. (2012, June 16-21). Three things everyone should know to improve object retrieval. [Paper presentation]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA. https://doi.org/10.1109/CVPR.2012.6248018

  • Baji, F., & Mocanu, M. (2018). Chain code approach for shape based image retrieval. Indian Journal of Science and Technology, 11(3), 1-17. https://doi.org/10.17485/ijst/2018/v11i3/119998

  • Bataineh, B., Abdullah, S. N. H. S., Omar, K., & Faidzul, M. (2011). Adaptive thresholding methods for documents image binarization. In J. F. Martinez-Trinidad, J. A. Carrasco-Oschoa, C. B. Y. Brants & E. R. Hancock (Eds.), Pattern recognition (pp. 230-239). Springer. https://doi.org/10.1007/978-3-642-21587-2_25

  • Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded up robust features. In A. Leonardis, H. Bischof & A. Pinz (Eds.), Computer vision ECCV 2006 (pp. 404-417). Springer. https://doi.org/10.1007/11744023_32

  • Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary robust independent elementary features. In K. Daniilidis, P. Maragos & N. Paragios (Eds.), Computer vision ECCV 2010 (pp. 778-792). Springer. https://doi.org/10.1007/978-3-642-15561-1_56

  • Cao, J., Huang, Y., Dai, Q., & Ling, W. K. (2021). Unsupervised trademark retrieval method based on attention mechanism. Sensors, 21(5), Article 1894. https://doi.org/10.3390/s21051894

  • Chen, Y. H., Chang, C. C., Lin, C. C., & Hsu, C. Y. (2018). Content-based color image retrieval using block truncation coding based on binary ant colony optimization. Symmetry, 11(1), Article 21. https://doi.org/10.3390/sym11010021

  • Cheung, W., & Hamarneh, G. (2007, April 12-15). N-SIFT: N-dimensional scale invariant feature transform for matching medical images. [Paper presentation]. 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, USA. https://doi.org/10.1109/ISBI.2007.356953

  • Dewan, J. H., & Thepade, S. D. (2021, March 5-7). Fusion based image retrieval using haralick moments and TSBTC features. [Paper presentation]. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India. https://doi.org/10.1109/ESCI50559.2021.9396833

  • Dhotre, D. R., & Bamnote, G. R. (2017, September 22-24). Multilevel haar wavelet transform and histogram usage in content based image retrieval system. [Paper presentation]. 2017 International Conference on Vision, Image and Signal Processing (ICVISP), Osaka, Japan. https://doi.org/10.1109/ICVISP.2017.34

  • Du, A., Wang, L., & Qin, J. (2019). Image retrieval based on colour and improved NMI texture features. Automatika: Časopis Za Automatiku, Mjerenje, Elektroniku, Računarstvo I Komunikacije, 60(4), 491-499. https://doi.org/10.1080/00051144.2019.1645977

  • Guo, J. M., & Liu, Y. F. (2014). Improved block truncation coding using optimized dot diffusion. IEEE Transactions on Image Processing, 23(3), 1269-1275. https://doi.org/10.1109/TIP.2013.2257812

  • Guo, J. M., & Prasetyo, H. (2015). Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Transactions on Image Processing, 24(3), 1010-1024. https://doi.org/10.1109/TIP.2014.2372619

  • Guo, J. M., Prasetyo, H., & Chen, J. H. (2015). Content-based image retrieval using error diffusion block truncation coding features. IEEE Transactions on Circuits and Systems for Video Technology, 25(3), 466-481. https://doi.org/10.1109/TCSVT.2014.2358011

  • Guo, J. M., Prasetyo, H., & Wang, N. J. (2015). Effective image retrieval system using dot-diffused block truncation coding features. IEEE Transactions on Multimedia, 17(9), 1576-1590. https://doi.org/10.1109/TMM.2015.2449234

  • Hadjadj, Z., Meziane, A., Cherfa, Y., Cheriet, M., & Setitra, I. (2016). ISauvola: Improved sauvola’s algorithm for document image binarization. In A. Campilho & F. Karray (Eds.), Image Analysis and Regocnition (pp. 737-745). https://doi.org/10.1007/978-3-319-41501-7_82

  • Han, J., & Ma, K. K. (2002). Fuzzy color histogram and its use in color image retrieval. IEEE Transactions on Image Processing, 11(8), 944-952. https://doi.org/10.1109/TIP.2002.801585

  • Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6(SMC-3), 610-621. https://doi.org/10.1109/TSMC.1973.4309314

  • Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Alvey Vision Conference, 15(50), 147-151.

  • Hua, J. Z., Liu, G. H., & Song, S. X. (2019). Content-based image retrieval using color volume histograms. International Journal of Pattern Recognition and Artificial Intelligence, 33(11), Article 1940010. https://doi.org/10.1142/S021800141940010X

  • Huang, J., Kumar, S. R., Mitra, M., Zhu, W. J., & Rabih, R. (1997, June 17-19). Image indexing using color correlograms. [Paper presentation]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Puerto Rico, USA. https://doi.org/10.1109/CVPR.1997.609412

  • Jabeen, S., Mehmood, Z., Mahmood, T., Saba, T., Rehman, A., & Mahmood, M. T. (2018). An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model. PloS One, 13(4), Article e0194526. https://doi.org/10.1371/journal.pone.0194526

  • Ji, Y., Wang, W., Lv, Y., & Zhou, W. (2020). Research on fabric image retrieval method based on multi-feature layered fusionon. Journal of Physics: Conference Series, 1549(5), Article 052038. https://doi.org/10.1088/1742-6596/1549/5/052038

  • Kayhan, N., & Fekri-Ershad, S. (2021). Content based image retrieval based on weighted fusion of texture and color features derived from modified local binary patterns and local neighborhood difference patterns. Multimedia Tools and Applications, 80(21-23), 32763-32790. https://doi.org/10.1007/s11042-021-11217-z

  • Ke, Y., & Sukthankar, R. (2004, June 27 - July 2). PCA-SIFT: A more distinctive representation for local image descriptors. [Paper presentation]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2, Washington, USA. https://doi.org/10.1109/CVPR.2004.1315206

  • Latif, A., Rasheed, A., Sajid, U., Ahmed, J., Ali, N., Ratyal, N. I., Zafar, B., Dar, S. H., Sajid, M., & Khalil, T. (2019). Content-based image retrieval and feature extraction: A comprehensive review. Mathematical Problems in Engineering, 2019, Article 9658350. https://doi.org/10.1155/2019/9658350

  • Lazzara, G., & Géraud, T. (2014). Efficient multiscale Sauvola’s binarization. International Journal on Document Analysis and Recognition (IJDAR), 17(2), 105-123. https://doi.org/10.1007/s10032-013-0209-0

  • Lee, J., Jin, R., Jain, A., & Tong, W. (2012). Image retrieval in forensics: Tattoo image database application. IEEE Multimedia, 19(1), 40-49. https://doi.org/10.1109/MMUL.2011.59

  • Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011, November 6-13). BRISK: Binary Robust invariant scalable keypoints. [Paper presentation]. 2011 International Conference on Computer Vision, Barcelona, Spain. https://doi.org/10.1109/ICCV.2011.6126542

  • Li, J., & Wang, J. Z. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1075–1088. https://doi.org/10.1109/TPAMI.2003.1227984

  • Loupias, E., Sebe, N., Bres, S., & Jolion, J. M. (2000, September 10-13). Wavelet-based salient points for image retrieval. [Paper presentation]. Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), Vancouver, Canada. https://doi.org/10.1109/ICIP.2000.899469

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

  • Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837-842. https://doi.org/10.1109/34.531803

  • Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 22(10), 761-767. https://doi.org/https://doi.org/10.1016/j.imavis.2004.02.006

  • Mehmood, Z., Abbas, F., Mahmood, T., Javid, M. A., Rehman, A., & Nawaz, T. (2018). Content-based image retrieval based on visual words fusion versus features fusion of local and global features. Arabian Journal for Science and Engineering, 43(12), 7265-7284. https://doi.org/10.1007/s13369-018-3062-0

  • Mikolajczyk, K., & Schmid, C. (2001, July 7-14). Indexing based on scale invariant interest points. [Paper presentation]. Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, Canada. https://doi.org/10.1109/ICCV.2001.937561

  • Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In A. Heyden, G. Sparr, M. Nielsen & P. Johansen (Eds.), Computer vision – ECCV 2002 (pp. 128-142). Springer. https://doi.org/10.1007/3-540-47969-4_9

  • Mistry, Y., Ingole, D. T., & Ingole, M. D. (2016, April 28-30). Efficient content based image retrieval using transform and spatial feature level fusion. [Paper presentation]. 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), Hong Kong, China. https://doi.org/10.1109/ICCAR.2016.7486744

  • Müller, H. (2020, June 8-11). Medical image retrieval: applications and resources. [Paper presentation]. ICMR ‘20: Proceedings of the 2020 International Conference on Multimedia Retrieval, New York, USA. https://doi.org/10.1145/3372278.3390668

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012a). Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing, 21(5), 2874-2886. https://doi.org/10.1109/TIP.2012.2188809

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012b). Directional local extrema patterns: A new descriptor for content based image retrieval. International Journal of Multimedia Information Retrieval, 1(3), 191-203. https://doi.org/10.1007/s13735-012-0008-2

  • Nene, S. A., Nayar, S. K., & Murase, H. (n.d.). Columbia Object Image Library (COIL-20). Retrieved July 20, 2019, from http://www.cs.columbia.edu/CAVE/publications/pdfs/Nene_TR96.pdf

  • Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51-59. https://doi.org/10.1016/0031-3203(95)00067-4

  • Pass, G., Zabih, R., & Miller, J. (1996, November 18-22). Comparing images using color coherence vectors. [Paper presentation]. MM96: The Fourth ACM International Multimedia Conference, Massachusetts, USA. https://doi.org/10.1145/244130.244148

  • Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer vision - ECCV 2006 (pp. 430-443). Springer. https://doi.org/10.1007/11744023_34

  • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011, November 6-13). ORB: An efficient alternative to SIFT or SURF. [Paper presentation]. 2011 International Conference on Computer Vision, Barcelona, Spain. https://doi.org/10.1109/ICCV.2011.6126544

  • Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. https://doi.org/10.1016/S0031-3203(99)00055-2

  • Shao, H., Wu, Y., Cui, W., & Zhang, J. (2008, November 18-21). Image retrieval based on MPEG-7 dominant color descriptor. [Paper presentation]. 2008 The 9th International Conference for Young Computer Scientists, Hunan China. https://doi.org/10.1109/ICYCS.2008.89

  • Shi, J., & Tomasi. (1994, June 21-23). Good features to track. [Paper presentation]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA. https://doi.org/10.1109/CVPR.1994.323794

  • Shifa, A., Afgan, M. S., Asghar, M. N., Fleury, M., Memon, I., Abdullah, S., & Rasheed, N. (2018). Joint crypto-stego scheme for enhanced image protection with nearest-centroid clustering. IEEE Access, 6, 16189-16206. https://doi.org/10.1109/ACCESS.2018.2815037

  • Singh, V. P., & Srivastava, R. (2018). Effective image retrieval based on hybrid features with weighted similarity measure and query image classification. International Journal of Computational Vision and Robotics, 8(2), Article 98. https://doi.org/10.1504/IJCVR.2018.091979

  • Smith, S. M., & Brady, J. M. (1997). SUSAN-A new approach to low level image processing. International Journal of Computer Vision, 23(1), 45-78. https://doi.org/10.1023/A:1007963824710

  • Srivastava, P., & Khare, A. (2018). Utilizing multiscale local binary pattern for content-based image retrieval. Multimedia Tools and Applications, 77(10), 12377-12403. https://doi.org/10.1007/s11042-017-4894-4

  • Sumana, I. J., Islam, M. M., Zhang, D., & Lu, G. (2008, October 8-10). Content based image retrieval using curvelet transform. [Paper presentation]. 2008 IEEE 10th Workshop on Multimedia Signal Processing, Cairns, Australia. https://doi.org/10.1109/MMSP.2008.4665041

  • Sun, J., & Wu, X. (2006, December 18-20). Chain code distribution-based image retrieval. [Paper presentation]. 2006 International Conference on Intelligent Information Hiding and Multimedia, California, USA . https://doi.org/10.1109/IIH-MSP.2006.264973

  • Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, 8(6), 460-473. https://doi.org/10.1109/TSMC.1978.4309999

  • Tarawneh, A. S., Hassanat, A. B. A., Celik, C., Chetverikov, D., Rahman, M. S., & Verma, C. (2018). Deep Face Image Retrieval: A Comparative Study with Dictionary Learning. ArXiv. http://arxiv.org/abs/1812.05490

  • Tunio, M. H., Memon, I., Mallah, G. A., Shaikh, N. A., Shaikh, R. A., & Magsi, Y. (2020, February 8-9). Automation of traffic control system using image morphological operations. [Paper presentation]. 2020 International Conference on Information Science and Communication Technology (ICISCT), Karachi, India. https://doi.org/10.1109/ICISCT49550.2020.9080051

  • Van De Sande, K., Gevers, T., & Snoek, C. (2010). Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1582-1596. https://doi.org/10.1109/TPAMI.2009.154

  • Varish, N., Pal, A. K., Hassan, R., Hasan, M. K., Khan, A., Parveen, N., Banerjee, D., Pellakuri, V., Haqis, A. U., & Memon, I. (2020). Image retrieval scheme using quantized bins of color image components and adaptive tetrolet transform. IEEE Access, 8, 117639-117665. https://doi.org/10.1109/ACCESS.2020.3003911

  • Wang, J., Wang, L., Liu, X., Ren, Y., & Yuan, Y. (2018). Color-based image retrieval using proximity space theory. Algorithms, 11(8), Article 115. https://doi.org/10.3390/a11080115

  • Wang, J. Z., Li, J., & Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947–963. https://doi.org/10.1109/34.955109

  • Xiaoling, W., & Kanglin, X. (2004, September 16). A novel direction chain code-based image retrieval. [Paper presentation]. The Fourth International Conference OnComputer and Information Technology, 2004. CIT ’04., Wuhan, China. https://doi.org/10.1109/CIT.2004.1357195

  • Yang, Z., Ge, Y., Huang, Z., & Xiong, C. (2021, March 26-28). Supervised hashing with kernel based on feature fusion for remote sensing image retrieval. [Paper presentation]. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China. https://doi.org/10.1109/ICBAIE52039.2021.9389931

  • Yu, G., & Morel, J. M. (2011). ASIFT: An algorithm for fully affine invariant comparison. Image Processing On Line, 1, 11-38. https://doi.org/10.5201/ipol.2011.my-asift

  • Yu, J., Qin, Z., Wan, T., & Zhang, X. (2013). Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing, 120, 355-364. https://doi.org/10.1016/j.neucom.2012.08.061

  • Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533-544. https://doi.org/10.1109/TIP.2009.2035882

  • Zhang, S., Tian, Q., Lu, K., Huang, Q., & Gao, W. (2013). Edge-SIFT: Discriminative binary descriptor for scalable partial-duplicate mobile search. IEEE Transactions on Image Processing, 22(7), 2889-2902. https://doi.org/10.1109/TIP.2013.2251650

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3688-2022

Download Full Article PDF

Share this article

Related Articles