e-ISSN 2231-8526
ISSN 0128-7680
Sakina Tamassoki, Nik Norsyahariati Nik Daud, Mohammad Nazir Nejabi and Mohammad Jawed Roshan
Pertanika Journal of Science & Technology, Volume 31, Issue 1, January 2023
DOI: https://doi.org/10.47836/pjst.31.1.14
Keywords: Brittleness, cement, fibre, lime, microstructure, reinforced, stabilized, strength behaviour
Published on: 3 January 2023
Soil modification is a technique for improving poor soil properties to make them suitable for engineering projects. Regarding the previous studies, various types of stabilisations were used to improve mechanical properties in soil. Several methodologies and experimental tests were used to study the positive and negative effects of utilising fibre on lime/cement-modified soil. This paper reviews the strength behaviour and microstructural properties of Fibre-Reinforced Lime Stabilised (FRLS) soil and Fibre-Reinforced Cement Stabilised (FRCS) Soil. First, the impact of FRLS/FRCS soil on strength behaviour under freeze-thaw conditions, the California Bearing Ratio (CBR) value, and compression/tensile strength are all examined. Then synthetic and natural fibres are compared at the microstructure level. FRCS/FRLS soil has been studied for its influence on geotechnical characteristics such as peak strength, residual strength, ductility, bearing capacity, stiffness, and settlement values. In addition, the micro-level evidence demonstrates that lime/cement affects the interlocking between soil particles and fibre. Although lime/cement improves soil strength by making it solid and compact, it makes stabilised soil brittle. Fibre as reinforcement in lime/cement stabilised soil transforms the brittleness of the soil into ductility. Hence building various infrastructures on poor soils is possible if fibre with lime/cement is used as an improvement method. Here, these three most used soil additive materials are investigated in terms of strength, microstructural, mineralisation, and some open issues are suggested for further research.
Abdi, M. M. R., Ghalandarzadeh, A., & Chafi, L. S. (2021). An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 885-898. https://doi.org/10.1016/j.jrmge.2020.11.008
Al-Jabban, W., Laue, J., Knutsson, S., & Al-Ansari, N. (2019). A Comparative evaluation of cement and by-product Petrit T in soil stabilization. Applied Sciences, 9(23), Article 5238. https://doi.org/10.3390/app9235238
Al-Mukhtar, M., Lasledj, A., & Alcover, J. F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 50°C. Applied Clay Science, 50(2), 199-203. https://doi.org/10.1016/j.clay.2010.07.022
Anggraini, V., Asadi, A., Syamsir, A., & Huat, B. B. K. (2017). Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber. Measurement, 111, 158-166. https://doi.org/10.1016/j.measurement.2017.07.045
Ateş, A. (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering, 96, 295-304. https://doi.org/10.1016/j.compositesb.2016.04.049
Behnood, A. (2018). Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17(Part A), 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002
Boobalan, S. C., & Devi, M. S. (2022). Investigational study on the influence of lime and coir fiber in the stabilization of expansive soil. Materials Today: Proceedings, 60(Part 1), 311-314 https://doi.org/10.1016/J.MATPR.2022.01.230
Boz, A., & Sezer, A. (2018). Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Regions Science and Technology, 151, 359-366. https://doi.org/10.1016/j.coldregions.2018.03.026
Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Dolmacı, Ö. A. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6), Article 122. https://doi.org/10.1007/s12517-018-3458-x
Broderick, G. P., & Daniel, D. E. (1990). Stabilizing compacted clay against chemical attack. Journal of Geotechnical Engineering, 116(10), 1549-1567. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1549)
Cai, Y., Shi, B., Ng, C. W. W., & Tang, C. S. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87(3-4), 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007
Chen, H., & Wang, Q. (2006). The behaviour of organic matter in the process of soft soil stabilization using cement. Bulletin of Engineering Geology and the Environment, 65(4), 445-448. https://doi.org/10.1007/s10064-005-0030-1
Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)
Consoli, N. C., De Moraes, R. R., & Festugato, L. (2011). Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils. Geosynthetics International, 18(2), 57-62. https://doi.org/10.1680/gein.2011.18.2.57
Consoli, N. C., Montardo, J. P., Prietto, P. D. M., & Pasa, G. S. (2002). Engineering behavior of a sand reinforced with plastic waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462-472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)
Correia, A. S. A. S., Oliveira, P. J. V., Odio, D. G. C., Oliveira, P. J. V., & Custódio, D. G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43(2), 97-106. https://doi.org/10.1016/j.geotexmem.2014.11.008
Dhar, S., & Hussain, M. (2019). The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil. Road Materials and Pavement Design, 20(8), 1757-1778. https://doi.org/10.1080/14680629.2018.1468803
Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155-165. https://doi.org/10.1016/j.coldregions.2018.07.004
Du, J., Liu, B., Wang, Z., Zheng, G., Jiang, N. J., Zhou, M., & Zhou, H. (2021). Dynamic behavior of cement-stabilized organic-matter-disseminated sand under cyclic triaxial condition. Soil Dynamics and Earthquake Engineering, 147, 106777. https://doi.org/10.1016/J.SOILDYN.2021.106777
Eskisar, T. (2015). Influence of cement treatment on unconfined compressive strength and compressibility of lean clay with medium plasticity. Arabian Journal for Science and Engineering, 40, 763-772. https://doi.org/10.1007/s13369-015-1579-z
Ghadakpour, M., Choobbasti, A. J., & Kutanaei, S. S. (2020). Investigation of the kenaf fiber hybrid length on the properties of the cement-treated sandy soil. Transportation Geotechnics, 22, Article 100301. https://doi.org/10.1016/j.trgeo.2019.100301
Ghazavi, M., & Roustaie, M. (2010). The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay. Cold Regions Science and Technology, 61(2), 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005
Ghobadi, M. H., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73, 611-619. https://doi.org/10.1007/S10064-013-0563-7
Güllü, H., & Khudir, A. (2014). Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold Regions Science and Technology, 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008
Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005
Han, J. (2015). Principles and practice of ground improvement. John Wiley & Sons.
He, S., Wang, X., Bai, H., Xu, Z., & Ma, D. (2021). Effect of fiber dispersion, content and aspect ratio on tensile strength of PP fiber reinforced soil. Journal of Materials Research and Technology, 15, 1613-1621. https://doi.org/10.1016/J.JMRT.2021.08.128
Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045
Jafari, M., & Esna-ashari, M. (2012). Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition. Cold Regions Science and Technology, 82, 21-29. https://doi.org/10.1016/j.coldregions.2012.05.012
Jairaj, C., Kumar, M. T. P., & Ramesh, H. N. (2020). Effect of addition of lime on coir fiber admixed BC soil. Innovative Infrastructure Solutions, 5, Article 49. https://doi.org/10.1007/s41062-020-00300-3
Jamsawang, P., Voottipruex, P., & Horpibulsuk, S. (2015). Flexural strength characteristics of compacted cement-polypropylene fiber sand. Journal of Materials in Civil Engineering, 27(9), Article 04014243. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001205
Kafodya, I., & Okonta, F. (2018). Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Construction and Building Materials, 170, 737-746. https://doi.org/10.1016/j.conbuildmat.2018.02.194
Kamaruddin, F. A., Nahazanan, H., Huat, B. K., & Anggraini, V. (2020). Improvement of marine clay soil using lime and alkaline activation stabilized with inclusion of treated coir fibre. Applied Sciences, 10(6), Article 2129. https://doi.org/10.3390/app10062129
Kravchenko, E., Liu, J., Krainiukov, A., & Chang, D. (2019). Dynamic behavior of clay modified with polypropylene fiber under freeze-thaw cycles. Transportation Geotechnics, 21, Article 100282. https://doi.org/10.1016/j.trgeo.2019.100282
Kumar, A., & Gupta, D. (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures. Geotextiles and Geomembranes, 44(3), 466-474. https://doi.org/10.1016/j.geotexmem.2015.07.010
Kutanaei, S. S., & Choobbasti, A. J. (2017). Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand. Journal of Materials in Civil Engineering, 29(3), Article 4016230.
Labiad, Y., Meddah, A., & Beddar, M. (2022). Physical and mechanical behavior of cement-stabilized compressed earth blocks reinforced by sisal fibers. Materials Today: Proceedings, 53(Part 1), 139-143. https://doi.org/10.1016/J.MATPR.2021.12.446
Lee, M. K., & Barr, B. I. G. (2004). An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement and Concrete Composites, 26(4), 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7
Lenoir, T., Preteseille, M., & Ricordel, S. (2016). Contribution of the fiber reinforcement on the fatigue behavior of two cement-modified soils. International Journal of Fatigue, 93(Part1), 71-81. https://doi.org/10.1016/j.ijfatigue.2016.08.007
Li, M., Chai, S. X., Zhang, H. Y., Du, H. P., & Wei, L. (2012). Feasibility of saline soil reinforced with treated wheat straw and lime. Soils and Foundations, 52(2), 228-238. https://doi.org/10.1016/j.sandf.2012.02.003
Little, D. N., & Nair, S. (2009). Recommended practice for stabilization of subgrade soils and base materials. National Academies Press. https://doi.org/10.17226/22999
Miller, C. J., & Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 891-895.
Mishra, B., & Gupta, M. K. (2018). Use of randomly oriented polyethylene terephthalate (PET) fiber in combination with fly ash in subgrade of flexible pavement. Construction and Building Materials, 190, 95-107. https://doi.org/10.1016/j.conbuildmat.2018.09.074
Mobini, M., Khaloo, A., Hosseini, P., & Esrafili, A. (2015). Mechanical properties of fiber-reinforced high-performance concrete incorporating pyrogenic nanosilica with different surface areas. Construction and Building Materials, 101(Part 1), 130-140. https://doi.org/10.1016/j.conbuildmat.2015.10.032
Moghal, A. A. B., Chittoori, B. C. S., & Basha, B. M. (2018). Effect of fibre reinforcement on CBR behaviour of lime-blended expansive soils: Reliability approach. Road Materials and Pavement Design, 19(3), 690-709. https://doi.org/10.1080/14680629.2016.1272479
Narani, S. S., Abbaspour, M., Hosseini, S. M. M. M., & Nejad, F. M. (2020). Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs). Transportation Geotechnics, 24, Article 100375. https://doi.org/https://doi.org/10.1016/j.trgeo.2020.100375
Oliveira, P. J. V., Correia, A. A. S., Teles, J. M. N. P. C., & Custódio, D. G. (2016). Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 23(3), 171-182. https://doi.org/10.1680/jgein.15.00040
Onyejekwe, S., & Ghataora, G. S. (2014). Effect of fiber inclusions on flexural strength of soils treated with nontraditional additives. Journal of Materials in Civil Engineering, 26(8), Article 4014039.
Osinubi, K. J., Ijmdiya, T. S., & Nmadu, I. (2009). Lime stabilization of black cotton soil using bagasse ash as admixture. Advanced Materials Research, 62-64, 3-10. https://doi.org/10.4028/www.scientific.net/amr.62-64.3
Otoko, G. R., & Pedro, P. P. (2014). Cement stabilization of Laterite and Chikoko soils using waste rubber fibre. International Journal of Engineering Sciences & Research Technology, 3(10), 130-136.
Petry, T. M., & Little, D. N. (2002). Review of stabilization of clays and expansive soils in pavements and lightly loaded structures - History, practice, and future. Journal of Materials in Civil Engineering, 14(6), 447-460. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)
Praveen, G. V., & Kurre, P. (2020). Influence of coir fiber reinforcement on shear strength parameters of cement modified marginal soil mixed with fly ash. Materials Today: Proceedings, 39(Part 1), 504-507. https://doi.org/10.1016/j.matpr.2020.08.238
Praveen, G. V, Kurre, P., & Chandrabai, T. (2020). Improvement of California bearing ratio (CBR) value of steel fiber reinforced cement modified marginal soil for pavement subgrade admixed with fly ash. Materials Today: Proceedings, 31(Part 1), 639-642. https://doi.org/10.1016/j.matpr.2020.08.814
Preteseille, M., & Lenoir, T. (2016). Structural test at the laboratory scale for the utilization of stabilized fine-grained soils in the subgrades of high-speed rail infrastructures: Experimental aspects. International Journal of Fatigue, 82(Part 3), 505-513. https://doi.org/https://doi.org/10.1016/j.ijfatigue.2015.09.005
Preteseille, M., Lenoir, T., & Hornych, P. (2013). Sustainable upgrading of fine-grained soils present in the right-of-way of high speed rail projects. Construction and Building Materials, 44, 48-53. https://doi.org/10.1016/j.conbuildmat.2013.03.022
Punthutaecha, K., Puppala, A. J., Vanapalli, S. K., & Inyang, H. (2006). Volume change behaviors of expansive soils stabilized with recycled ashes and fibers. Journal of Materials in Civil Engineering, 18(2), 295-306.
Ramkrishnan, R., Sruthy, M. R., Sharma, A., & Karthik, V. (2018). Effect of random inclusion of sisal fibres on strength behavior and slope stability of fine grained soils. Materials Today: Proceedings, 5(11, Part 3), 25313-25322. https://doi.org/10.1016/j.matpr.2018.10.334
Ranjan, G., Vasan, R. M., & Charan, H. D. (1994). Behaviour of plastic-fibre-reinforced sand. Geotextiles and Geomembranes, 13(8), 555-565. https://doi.org/https://doi.org/10.1016/0266-1144(94)90019-1
Rivera-Gómez, C., Galán-Marín, C., & Bradley, F. (2014). Analysis of the influence of the fiber type in polymer matrix/fiber bond using natural organic polymer stabilizer. Polymers, 6(4), 977-994. https://doi.org/10.3390/polym6040977
Rizal, N. H. A., Hezmi, M. A., Razali, R., Wahab, N. A., Roshan, M. J., Rashid, A. S. A., & Hasbollah, D. Z. A. (2022). Effects of lime on the compaction characteristics of lateritic soil in UTM, Johor. In IOP Conference Series: Earth and Environmental Science, 971(1), Article 012031. IOP Publishing. https://doi.org/10.1088/1755-1315/971/1/012031
Roshan, M. J., A Rashid, A. S., Abdul Wahab, N., Tamassoki, S., Jusoh, S. N., Hezmi, M. A., Nik Daud, N. N., Mohd Apandi, N., & Azmi, M. (2022). Improved methods to prevent railway embankment failure and subgrade degradation: A review. Transportation Geotechnics, 37, Article 100834. https://doi.org/10.1016/J.TRGEO.2022.100834
Rosone, M., Ferrari, A., & Celauro, C. (2018). On the hydro-mechanical behaviour of a lime-treated embankment during wetting and drying cycles. Geomechanics for Energy and the Environment, 14, 48-60. https://doi.org/10.1016/j.gete.2017.11.001
Roustaei, M., Eslami, A., & Ghazavi, M. (2015). Effects of freeze–thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011
Saygili, A., & Dayan, M. (2019). Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers. Cold Regions Science and Technology, 161, 107-114. https://doi.org/10.1016/j.coldregions.2019.03.010
Senanayake, M., Arulrajah, A., Maghool, F., & Horpibulsuk, S. (2022). Evaluation of rutting resistance and geotechnical properties of cement stabilized recycled glass, brick and concrete triple blends. Transportation Geotechnics, 34, 100755. https://doi.org/10.1016/J.TRGEO.2022.100755
Shen, Y., Tang, Y., Yin, J., Li, M., & Wen, T. (2021). An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement. Construction and Building Materials, 294, Article 123537. https://doi.org/10.1016/j.conbuildmat.2021.123537
Sobhan, K. (2008). Improving the tensile strength and toughness of a soil-cement-fly ash pavement subgrade with recycled HDPE strips. In GeoCongress 2008: Geosustainability and Geohazard Mitigation (pp. 1065-1072). American Society of Civil Engineers. https://doi.org/10.1061/40971(310)133
Sukontasukkul, P., & Jamsawang, P. (2012). Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column. Construction and Building Materials, 29, 201-205. https://doi.org/10.1016/j.conbuildmat.2011.10.040
Tajdini, M., Bonab, M. H., & Golmohamadi, S. (2018). An experimental investigation on effect of adding natural and synthetic fibres on mechanical and behavioural parameters of soil-cement materials. International Journal of Civil Engineering, 16(4), 353-370. https://doi.org/10.1007/s40999-016-0118-y
Tamassoki, S., Norsyahariati, N., Daud, N., Jakarni, F. M., Kusin, F. M., Safuan, A., Rashid, A., & Roshan, M. J. (2022a). Compressive and shear strengths of coir fibre reinforced Activated carbon stabilised Lateritic soil. Sustainability, 14(15), 9100. https://doi.org/10.3390/SU14159100
Tamassoki, S., Norsyahariati, N., Daud, N., Jakarni, F. M., Kusin, F. M., Safuan, A., Rashid, A., & Jawed Roshan, M. (2022b). Performance evaluation of lateritic subgrade soil treated with lime and coir fibre-activated carbon. Applied Sciences, 12(16), 8279. https://doi.org/10.3390/APP12168279
Ta’negonbadi, B., & Noorzad, R. (2017). Stabilization of clayey soil using lignosulfonate. Transportation Geotechnics, 12, 45-55. https://doi.org/10.1016/j.trgeo.2017.08.004
Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
Thanushan, K., & Sathiparan, N. (2022). Mechanical performance and durability of banana fibre and coconut coir reinforced cement stabilized soil blocks. Materialia, 21, 101309. https://doi.org/10.1016/J.MTLA.2021.101309
Tharani, K., Selvan, G. P., Senbagam, T., & Karunakaran, G. (2021). An experimental investigation of soil stabilization using hybrid fibre and lime. Materials Today: Proceedings, 1-4. https://doi.org/10.1016/J.MATPR.2021.03.380
Tiwari, N., & Satyam, N. (2020). An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade. Engineering Science and Technology, an International Journal, 23(5), 1214-1222. https://doi.org/10.1016/j.jestch.2019.12.006
Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, Article 100474. https://doi.org/10.1016/j.trgeo.2020.100474
Wahab, N. A., Rashid, A. S. A., Roshan, M. J., Rizal, N. H. A., Yunus, N. Z. M., Hezmi, M. A., & Tadza, M. Y. M. (2021). Effects of cement on the compaction properties of lateritic soil. In IOP Conference Series: Materials Science and Engineering, 1153(1), Article 012015. IOP Publishing. https://doi.org/10.1088/1757-899X/1153/1/012015
Wahab, N. A., Roshan, M. J., Rashid, A. S. A., Hezmi, M. A., Jusoh, S. N., Norsyahariati, N. D. N., & Tamassoki, S. (2021). Strength and durability of cement-treated lateritic soil. Sustainability, 13(11), Article 6430. https://doi.org/10.3390/su13116430
Wang, Y., Guo, P., Li, X., Lin, H., Liu, Y., & Yuan, H. (2019). Behavior of fiber-reinforced and lime-stabilized clayey soil in triaxial tests. Applied Sciences, 9(5), 900. https://doi.org/10.3390/app9050900
Yi, Y., Jiang, Y., Tian, T., Fan, J., Deng, C., & Xue, J. (2022). Mechanical-strength-growth law and predictive model for ultra-large size cement-stabilized macadam based on the vertical vibration compaction method. Construction and Building Materials, 324, Article 126691. https://doi.org/10.1016/J.CONBUILDMAT.2022.126691
Yldz, M., & Soǧanc, A. S. (2012). Effect of freezing and thawing on strength and permeability of lime-stabilized clays. Scientia Iranica, 19(4), 1013-1017. https://doi.org/10.1016/J.SCIENT.2012.06.003
Yoobanpot, N., Jamsawang, P., Poorahong, H., Jongpradist, P., & Likitlersuang, S. (2020). Multiscale laboratory investigation of the mechanical and microstructural properties of dredged sediments stabilized with cement and fly ash. Engineering Geology, 267, Article 105491. https://doi.org/10.1016/j.enggeo.2020.105491
Zare, P., Narani, S. S., Abbaspour, M., Fahimifar, A., Hosseini, S. M. M. M., & Zare, P. (2020). Experimental investigation of non-stabilized and cement-stabilized rammed earth reinforcement by Waste Tire Textile Fibers (WTTFs). Construction and Building Materials, 260, Article 120432. https://doi.org/10.1016/j.conbuildmat.2020.120432
Zhao, Y., Yang, Y., Ling, X., Gong, W., Li, G., & Su, L. (2021). Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transportation Geotechnics, 28, Article 100507. https://doi.org/10.1016/J.TRGEO.2020.100507
ISSN 0128-7680
e-ISSN 2231-8526