e-ISSN 2231-8526
ISSN 0128-7680
Rahmiyati Kasim, Nursigit Bintoro, Sri Rahayoe and Yudi Pranoto
Pertanika Journal of Science & Technology, Volume 31, Issue 1, January 2023
DOI: https://doi.org/10.47836/pjst.31.1.21
Keywords: CNF, coatings, film, sago starch
Published on: 3 January 2023
This study aimed to produce new edible coatings based on the mixture of sago starch, cellulose nanofiber (CNF), glycerol, and tween-80.The effect of sago starch (5–10 g of starch/100 ml of distilled water), CNF (0.5–20% w/w), glycerol (10–30% w/w), and tween-80 (0.5–10% w/w) based on sago starch concentration on contact angle (CA), water vapor permeability (WVP), oxygen permeability (PO2) and tensile strength (TS) properties of the edible coatings were optimized using factorial experimental design (2k).The result showed that the linear model for all independent variables was significant (P<0.05) on all responses (dependent variable).The sago starch concentration depicted a significant (p < 0.001) positive effect on contact angle; CNF showed a statistically significant effect on WVP, PO2, and TS; tween-80 showed a significant effect on all dependent variables, whereas glycerol only affected WVP. The optimum concentrations of sago starch, CNF, glycerol, and tween-80 were predicted to be 5 g/100 ml distilled water, 20% w/w, 10% w/w, and 0.5% w/w based on sago starch, respectively to obtain the minimum contact angle, WVP, PO2, and the maximum TS. The predicted data for the optimized coating formulation were in good agreement with the experimental value. This work revealed that the potential of sago starch/CNF based coating formulation could be effectively produced and successfully applied for coating of food.
Agarwal, S. (2021). Major factors affecting the characteristics of starch based biopolymer films. European Polymer Journal, 160, Article 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788
Andrade, R., Skurtys, O., Osorio, F., Zuluaga, R., Gañán, P., & Castro, C. (2014). Wettability of gelatin coating formulations containing cellulose nanofibers on banana and eggplant epicarps. LWT-Food Science and Technology, 58(1), 158-165. https://doi.org/10.1016/j.lwt.2014.02.034
ASTM D882. (2010). Standard test methods for tensile properties of thin plastic sheeting, Annual Book of ASTM Standards, 87(Reapproved), 3-5. https://doi.org/10.1520/D0882-10
ASTM E 96 (1995). Standard test methods for water vapor transmission of materials. ASTM International. https://doi.org/10.1520/E0096-00E01
Azeredo, H. M. C., Rosa, M. F., Henrique, L., & Mattoso, C. (2017). Nanocellulose in bio-based food packaging applications. Industrial Crops & Products, 97, 664-671. https://doi.org/10.1016/j.indcrop.2016.03.013
Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/cellulose nanofiber using response surface methodology. Polymer Testing, 78, Article 105989. https://doi.org/10.1016/j.polymertesting.2019.105989
Balakrishnan, P., Sreekala, M. S., Kunaver, M., Huskić, M., & Thomas, S. (2017). Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate Polymers, 169, 176-188. https://doi.org/10.1016/j.carbpol.2017.04.017
Bangar, S. P., & Whiteside, W. S. (2021). Nano-cellulose reinforced starch bio composite films-A review on green composites. International Journal of Biological Macromolecules, 185, 849-860. https://doi.org/10.1016/j.ijbiomac.2021.07.017
Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348-356. https://doi.org/10.1016/j.ijbiomac.2017.01.122
Cazón, P., Vázquez, M., & Velazquez, G. (2018). Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polymer Testing, 69, 536-544. https://doi.org/10.1016/j.polymertesting.2018.06.016
Da Silva, J. B. A., Nascimento, T., Costa, L. A. S., Pereira, F. V., Machado, B. A., Gomes, G. V. P., Assis, D. J., & Druzian, J. I. (2015). Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Materials Today: Proceedings, 2(1), 200-207. https://doi.org/10.1016/j.matpr.2015.04.022
Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2017). Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chemistry, 232, 359-368. https://doi.org/10.1016/j.foodchem.2017.04.028
Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2018). Cellulose nanocrystals pickering emulsion incorporated chitosan coatings for improving storability of postharvest bartlett pears (Pyrus communis) during long-term cold storage. Food Hydrocolloids, 84, 229-237. https://doi.org/10.1016/j.foodhyd.2018.06.012
Ferrer, A., Pal, L., & Hubbe, M. (2017). Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops & Products, 95, 574-582. https://doi.org/10.1016/j.indcrop.2016.11.012
Ghosh, T., Nakano, K., & Katiyar, V. (2021). Curcumin doped functionalized cellulose nanofibers based edible chitosan coating on kiwifruits. International Journal of Biological Macromolecules, 184, 936-945. https://doi.org/10.1016/j.ijbiomac.2021.06.098
Gopi, S., Amalraj, A., Jude, S., Thomas, S., & Guo, Q. (2019). Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent. Journal of the Taiwan Institute of Chemical Engineers, 96, 664-671. https://doi.org/10.1016/j.jtice.2019.01.003
Hajar, O. S., Nordin, N., Ayuni, N., Azman, A., Sya, I., Amin, M., & Kadir, R. (2021). Effects of nanocellulose fi ber and thymol on mechanical, thermal, and barrier properties of corn starch films. International Journal of Biological Macromolecules. 183, 1352-1361. https://doi.org/10.1016/j.ijbiomac.2021.05.082
Kania, D., Yunus, R., Omar, R., Abdul, S., & Mohamed, B. (2021). Physicochemical and engineering aspects rheological investigation of synthetic-based drilling fluid containing non-ionic surfactant pentaerythritol ester using full factorial design. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625, Article 126700. https://doi.org/10.1016/j.colsurfa.2021.126700
Karim, A. A., & Tie, A. P. (2008). Starch from the sago (metroxylon sagu) palm tree - Properties, prospects, and challenges as a new industrial source for food. Comprehensive Reviews in Food Science and Food Safety, 7(3), 215-228. https://doi.org/10.1111/j.1541-4337.2008.00042.x
Kim, H., Roy, S., & Rhim, J. (2021). Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. Journal of Environmental Chemical Engineering, 9(5), Article 106043. https://doi.org/10.1016/j.jece.2021.106043
Kubík, Ľ., & Zeman, S. (2013). Determination of oxygen permeability of polyethylene and polypropylene nonwoven fabric foils. Research in Agricultural Engineering, 59(3), 105-113.
Lavecchia, R., Medici, F., Piga, L., & Zuorro, A. (2015). Factorial design analysis of the recovery of flavonoids from bilberry fruit by-products. International Journal of Applied
Engineering Research, 10(23), 43555-43559.
Li, M., Tian, X., Jin, R., & Li, D. (2018). Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products, 123, 654-660. https://doi.org/10.1016/j.indcrop.2018.07.043
Lopez-Polo, J., Silva-Weiss, A., Zamorano, M., & Osorio, F. A. (2020). Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydrate Polymers, 231, Article 115702. https://doi.org/10.1016/j.carbpol.2019.115702
Maniglia, B. C., Denise, Laroque, D. A., de Andrade, L. M., Carciofi, B. A. M., Tenorio, J. A. S., & de Andrade, C. J. (2019). Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, 144, Article 104368. https://doi.org/10.1016/j.reactfunctpolym. 2019.104368
Meneguin, A. B., Ferreira Cury, B. S., dos Santos, A. M., Franco, D. F., Barud, H. S., & da Silva Filho, E. C. (2017). Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydrate Polymers, 157, 1013-1023. https://doi.org/10.1016/j.carbpol.2016.10.062
Ortega-toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66-75. https://doi.org/10.1016/j.foodhyd.2013.11.011
Rodriguez, M., Oses, J., Ziani, K., & Mate, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. https://doi.org/10.1016/j.foodres.2006.04.002
Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., Raja, A. S. M., & Kambli, N. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44(Part A), Article 101352. https://doi.org/10.1016/j.fbio.2021.101352
Paula, A., Lamsal, B., Luiz, W., Magalhães, E., & Mottin, I. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151-1161. https://doi.org/10.1016/j.ijbiomac.2019. 08.115
Punia, S., Scott, W., Dunno, K. D., Armstrong, G., Dawson, P., & Love, R. (2022). Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. International Journal of Biological Macromolecules, 203, 350-360. https://doi.org/10.1016/j.ijbiomac.2022.01.133
Rahayoe, S. (2015). Control of characteristics of chitosan film as fruit coating with the
variation of types and additive compositions in making coating solutions (Doctoral dissertation). Gadjah Mada University, Indonesia. https://lib.ugm.ac.id/
Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70. https://doi.org/10.1016/j.postharvbio.2006.11.015
Riva, S. C., Opara, U. O., & Fawole, O. A. (2020). Recent developments on postharvest application of edible coatings on stone fruit: A review. Scientia Horticulturae, 262, Article 109074. https://doi.org/10.1016/j.scienta.2019.109074
Santacruz, S., Rivadeneira, C., & Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source andconcentration, plasticizer, surfactant’s hydrophobic tail andmechanical treatment. Food Hydrocolloids, 49, 89-94. https://doi.org/10.1016/j.foodhyd.2015.03.019
Sapper, M., Bonet, M., & Chiralt, A. (2019). Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. LWT, 116, Article 108574. https://doi.org/10.1016/j.lwt.2019.108574
Serpa, A., & Vel, J. (2016). Vegetable nanocellulose in food science: A review. Food Hydrocolloids 57, 178-186. https://doi.org/10.1016/j.foodhyd.2016.01.023
Shih, Y. T., & Zhao, Y. (2021). Development, characterization and validation of starch based biocomposite films reinforced by cellulose nanofiber as edible muffin liner. Food Packaging and Shelf Life, 28, Article 100655. https://doi.org/10.1016/j.fpsl.2021.100655
Silva, A. P. M., Oliveira, A. V., Pontes, S. M. A., Pereira, A. L. S., Souza Filho, M. de sá M., Rosa, M. F., & Azeredo, H. M. C. (2019). Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymers, 211, 209-216. https://doi.org/10.1016/j.carbpol.2019.02.013
Soofi, M., Alizadeh, A., Hamishehkar, H., Almasi, H., & Roufegarinejad, L. (2021). Preparation of nanobiocomposite film based on lemon waste containing cellulose nanofiber and savory essential oil: A new biodegradable active packaging system. International Journal of Biological Macromolecules, 169, 352-361. https://doi.org/10.1016/j.ijbiomac.2020.12.114
Soradech, S., Nunthanid, J., Limmatvapirat, S., & Luangtana-anan, M. (2017). Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control, 73(Part B), 1310-1317. https://doi.org/10.1016/j.foodcont.2016.10.059
Soto-Muñoz, L., Palou, L., Argente-Sanchis, M., Ramos-López, M. A., & Pérez-Gago, M. B. (2021). Optimization of antifungal edible pregelatinized potato starch-based coating formulations by response surface methodology to extend postharvest life of ‘Orri’ mandarins Lourdes SotoMun. Scientia Horticulturae, 288, Article 110394. https://doi.org/10.1016/j.scienta.2021.110394
Stachowiak, N., Kowalonek, J., & Kozlowska, J. (2020). Effect of plasticizer and surfactant on the properties of poly(vinyl alcohol)/chitosan films. International Journal of Biological Macromolecules, 164, 2100-2107. https://doi.org/10.1016/j.ijbiomac.2020.08.001
Sun, X., Wu, Q., Picha, D. H., Ferguson, M. H., Ndukwe, I. E., & Azadi, P. (2021). Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 259, Article 117764. https://doi.org/10.1016/j.carbpol.2021.117764
Syafri, E., Jamaluddin, Wahono, S., Irwan, A., Asrofi, M., Sari, N. H., & Fudholi, A. (2019). Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. International Journal of Biological Macromolecules, 137, 119-125. https://doi.org/10.1016/j.ijbiomac.2019.06.174
Thakur, R., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2018). Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (Prunus salicina). Scientia Horticulturae, 237, 59-66. https://doi.org/10.1016/j.scienta.2018.04.005
Thakur, Rahul, Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079-1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190
Tibolla, H., Pelissari, F. M., Martins, J. T., Lanzoni, E. M., Vicente, A. A., Menegalli, F. C., & Cunha, R. L. (2019). Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers, 207, 169-179. https://doi.org/10.1016/j.carbpol.2018.11.079
Ventura-Aguilar, R. I., Bautista-Baños, S., Flores-García, G., & Zavaleta-Avejar, L. (2018). Impact of chitosan based edible coatings functionalized with natural compounds on Colletotrichum fragariae development and the quality of strawberries. Food Chemistry, 262, 142-149. https://doi.org/10.1016/j.foodchem.2018.04.063
Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88-97. https://doi.org/10.1016/j.postharvbio.2016.01.011
Widaningrum, W., Miskiyah, M., & Winarti, C. (2015). Edible coating berbasis pati sagu dengan penambahan antimikroba minyak sereh pada paprika: Preferensi konsumen dan mutu vitamin C [Sago starch-based edible coating with antimicrobial addition of lemongrass oil to peppers: Consumer preferences and vitamin c]. Agritech Journal, 35(1), 53-60. https://doi.org/10.22146/agritech.9419
Xu, J., Xia, R., Zheng, L., Yuan, T., & Sun, R. (2019). Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nano fiber with enhanced mechanical properties. Carbohydrate Polymers, 224, Article 115164. https://doi.org/10.1016/j.carbpol.2019.115164
Yuan, Y., & Chen, H. (2021). Preparation and characterization of a biodegradable starch-based antibacterial film containing nanocellulose and polyhexamethylene biguanide. Food Packaging and Shelf Life, 30, Article 100718. https://doi.org/10.1016/j.fpsl.2021.100718
Zhong, Y., & Li, Y. (2011). Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydrate Polymers, 85(3), 622-628. https://doi.org/10.1016/j.carbpol.2011.03.031
Zhu, F. (2019). Food Hydrocolloids Recent advances in modifications and applications of sago starch. Food Hydrocolloids, 96, 412-423. https://doi.org/10.1016/j.foodhyd.2019.05.035
ISSN 0128-7680
e-ISSN 2231-8526