e-ISSN 2231-8526
ISSN 0128-7680
Anis Solehah Mohd Kamarudzaman, Nurul Huda Mohamad Nasir and Md Yushalify Misro
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.46
Keywords: Biquintic trigonometric Bézier surface, curvature analysis, Gaussian curvature, mean curvature
Published on: 1 April 2022
Bézier curves and surfaces are very important in many areas, especially the manufacturing and aerospace. Surface inspection through visualisation is required to create high-quality surfaces and reduce unwanted products. The smoothness of the surface can be quantified using curvature. In this research, different surfaces types will be generated using the quintic trigonometric Bézier basis function. All the surfaces will be evaluated and analysed using Gaussian and mean curvature. Finally, curvature for each surface type will be mapped using colour-coded mapping and can be further characterised based on their positive and negative curvature values. This insight can also help the designer produce a smooth surface and develop quality products.
Adnan, S. B. Z., Ariffin, A. A. M., & Misro, M. Y. (2020). Curve fitting using quintic trigonometric Bézier curve. In AIP Conference Proceedings (Vol. 2266, No. 1, p. 040009). AIP Publishing LLC. https://doi.org/10.1063/5.0018099
Ammad, M., & Misro, M. Y. (2020). Construction of local shape adjustable surfaces using quintic trigonometric Bézier curve. Symmetry, 12(8), Article 1205. https://doi.org/10.3390/sym12081205
Ammad, M., Misro, M. Y., & Ramli, A. (2022). A novel generalized trigonometric Bézier curve: Properties, continuity conditions and applications to the curve modeling. Mathematics and Computers in Simulation, 19, 744-763. https://doi.org/10.1016/j.matcom.2021.12.011
Bartkowiak, T., & Brown, C. A. (2019). Multiscale 3D curvature analysis of processed surface textures of aluminum alloy 6061 T6. Materials, 12(2), Article 257. https://doi.org/10.3390/ma12020257
Beck, J. M., Farouki, R. T., & Hinds, J. K. (1986). Surface analysis methods. IEEE Computer Graphics and Applications, 6(12), 18-36. https://doi.org/10.1109/MCG.1986.276587
Besl, P. J. (2012). Surfaces in range image understanding. Springer Science & Business Media.
Bibi, S., Abbas, M., Misro, M. Y., Majeed, A., & Nazir, T. (2021). Construction of generalized hybrid trigonometric Bézier surfaces with shape parameters and their applications. Journal of Mathematical Imaging and Vision, 63(9), 1118-1142. https://doi.org/10.1007/s10851-021-01046-y
Chang, K. H. (2016). e-Design: computer-aided engineering design. Academic Press.
Chen, Q., & Wang, G. (2003). A class of Bézier-like curves. Computer Aided Geometric Design, 20(1), 29-39. https://doi.org/10.1016/S0167-8396(03)00003-7
Devaraj, A. (2020). An overview of curvature. Retrieved May 5, 2021, from https://web.ma.utexas.edu/users/drp/files/Spring2020Projects/DRP_spring2020_final%20-%20Ashwin%20Devaraj.pdf
Dill, J. C. (1981). An application of color graphics to the display of surface curvature. In Proceedings of the 8th annual conference on Computer graphics and interactive techniques (pp. 153-161). ACM Publishing. https://doi.org/10.1145/800224.806801
Farin, G. (2014). Curves and surfaces for computer-aided geometric design: A practical guide. Elsevier.
Farin, G., Hoschek, J., & Kim, M. S. (Eds.). (2002). Handbook of computer aided geometric design. Elsevier. https://doi.org/10.1016/B978-0-444-51104-1.X5000-X
Garcia, D. R., Linke, B. S., & Farouki, R. T. (2021). Optimised routine of machining distortion characterization based on Gaussian surface curvature. In 2nd International Conference of the DFG International Research Training Group 2057–Physical Modeling for Virtual Manufacturing (iPMVM 2020) (pp. 1-17). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. https://doi.org10.4230/OASIcs.iPMVM.2020.5
Gatzke, T., Grimm, C., Garland, M., & Zelinka, S. (2005). Curvature maps for local shape comparison. In International Conference on Shape Modeling and Applications 2005 (SMI’05) (pp. 244-253). IEEE Publishing. https://doi.org/10.1109/SMI.2005.13
Hahmann, S. (1999). Visualisation techniques for surface analysis. In C. Bajaj (Ed.), Advanced visualization techniques (pp. 49-74). JohnWiley.
Hu, G., Wu, J., & Qin, X. (2018). A novel extension of the Bézier model and its applications to surface modeling. Advances in Engineering Software, 125, 27-54. https://doi.org/10.1016/j.advengsoft.2018.09.002
Ismail, N. H. M., & Misro, M. Y. (2020). Surface construction using continuous trigonometric Bézier curve. In AIP Conference Proceedings (Vol. 2266, No. 1, p. 040012). AIP Publishing LLC. https://doi.org/10.1063/5.0018101
Magid, E., Soldea, O., & Rivlin, E. (2007). A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data. Computer Vision and Image Understanding, 107(3), 139-159. https://doi.org/10.1016/j.cviu.2006.09.007
Marsh, D. (2005). Applied geometry for computer graphics and CAD. Springer Science & Business Media. https://doi.org/10.1007/b138823
Misro, M. Y., Ramli, A., & Ali, J. M. (2017). Quintic trigonometric Bézier curve with two shape parameters. Sains Malaysiana, 46(5), 825-831. http://dx.doi.org/10.17576/jsm-2017-4605-17
Misro, M. Y., Ramli, A., & Ali, J. M. (2019). Extended analysis of dynamic parameters on cubic trigonometric Bézier transition curves. In 2019 23rd International Conference in Information Visualization–Part II (pp. 141-146). IEEE Publishing. https://doi.org/10.1109/IV-2.2019.00036
Oxman, N. (2007). Get real towards performance-driven computational geometry. International Journal of Architectural Computing, 5(4), 663-684. https://doi.org/10.1260/147807707783600771
Piegl, L., & Tiller, W. (1996). The NURBS book. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-59223-2
Pressley, A. N. (2010). Elementary differential geometry. Springer Science & Business Media. https://doi.org/10.1007/978-1-84882-891-9
Razdan, A., & Bae, M. (2005). Curvature estimation scheme for triangle meshes using biquadratic Bézier patches. Computer-Aided Design, 37(14), 1481-1491. https://doi.org/10.1016/j.cad.2005.03.003
Seidenberg, L. R., Jerard, R. B., & Magewick, J. (1992). Surface curvature analysis using color. In Proceedings Visualization’92 (pp. 260-267). IEEE Publishing. https://doi.org/10.1109/VISUAL.1992.235200
Tan, X., & Zhu, Y. (2019). Quasi-quintic trigonometric Bézier curves with two shape parameters. Computational and Applied Mathematics, 38(4), 1-13. https://doi.org/10.1007/s40314-019-0961-y
Zain, S. A. A. A. S. M., Misro, M. Y., & Miura, K. T. (2021). Generalised fractional Bézier curve with shape parameters. Mathematics, 9(17), Article 2141. https://doi.org/10.3390/math9172141
Zheng, J., & Sederberg, T. W. (2003). Gaussian and mean curvatures of rational Bézier patches. Computer Aided Geometric Design, 20(6), 297-301. https://doi.org/10.1016/j.cagd.2003.06.002
ISSN 0128-7680
e-ISSN 2231-8526