e-ISSN 2231-8526
ISSN 0128-7680
Fan Li, Thomas Shean Yaw Choong, Soroush Soltani, Luqman Chuah Abdullah and Siti Nurul Ain Md. Jamil
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.13
Keywords: Calcium peroxide, degradation, fenton reaction, kinetic study, methylene blue
Published on: 1 April 2022
The textile industry is one of the fastest-growing industries that significantly contribute to the economic growth in Malaysia. Dyeing wastewater is one of the more difficult to control in industrial wastewater. Methylene blue is a widely used dye in the textile industry, which cannot be discharged directly into the natural environment without treatment. The present study involves the degradation of methylene blue by a Fenton-like system using calcium peroxide (CaO2, CP). The process of degradation was recorded spectrophotometrically. The field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) were measured for testing the purchased commercial calcium peroxide. The effect of pH, the initial dosage of CaO2, and temperatures were studied with kinetics modeling, respectively. The results indicated that 97.07% removal of methylene blue took place at the optimum condition (pH=3.0, initial CaO2, dosage=3.0 g, 65°C, 150 rpm, contact time=60 minutes). Over four models (zero-order, first-order, second-order, Behnajady, Modirshahla, and Ghanbary (BMG) model) applied in this study, the BMG model with the R2=0.9935 was in accordance with the experimental data.
Ameta, R., Kumar, D., & Jhalora, P. (2014). Photocatalytic degradation of methylene blue using calcium oxide. Acta Chimica & Pharmaceutica Indica, 4(1), 20-28.
Behnajady, M. A., Modirshahla, N., & Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1-2), 98-102. https://doi.org/10.1016/j.jhazmat.2007.02.003
Cuerda-Correa, E. M., Alexandre-Franco, M. F., & Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. Water, 12(1), Article 102. https://doi.org/10.3390/w12010102
Ebrahiem, E. E., Al-Maghrabi, M. N., & Mobarki, A. R. (2017). Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arabian Journal of Chemistry, 10, S1674-S1679. https://doi.org/10.1016/j.arabjc.2013.06.012
Emami, F., Tehrani-Bagha, A. R., Gharanjig, K., & Menger, F. M. (2010). Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye. Desalination, 257(1-3), 124-128. https://doi.org/10.1016/j.desal.2010.02.035
Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from direct blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158-S1163. https://doi.org/10.1016/j.arabjc.2013.02.009
Fernandes, N. C., Brito, L. B., Costa, G. G., Taveira, S. F., Cunha-Filho, M. S. S., Oliveira, G. A. R., & Marreto, R. N. (2018). Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests. Chemico-Biological Interactions, 291, 47-54. https://doi.org/10.1016/j.cbi.2018.06.003
Girard, J. E. (2013). Principles of environmental chemistry (2nd Ed.). Jones & Bartlett Learning.
Hou, X., Shen, W., Huang, X., Ai, Z., & Zhang, L. (2016). Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B. Journal of Hazardous Materials, 308, 67-74. https://doi.org/10.1016/j.jhazmat.2016.01.031
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018a). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018b). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
León, G., Miguel, B., Manzanares, L., Saavedra, M. I., & Guzmán, M. A. (2021). Kinetic study of the ultrasound effect on Acid Brown 83 dye degradation by hydrogen peroxide oxidation processes. ChemEngineering, 5(3), Article 52. https://doi.org/10.3390/chemengineering5030052
Liu, X. (2018). Progress in the mechanism and kinetics of Fenton reaction. MOJ Ecology & Environmental Sciences, 3(1), 10-14. https://doi.org/10.15406/mojes.2018.03.00060
Madan, S. S., Upwanshi W, A., & Wasewar, K. L. (2016). Adsorption of α-toluic acid by calcium peroxide nanoparticles. Desalination and Water Treatment, 57(35), 16507-16513. https://doi.org/10.1080/19443994.2015.1079255
Olyaie, E., Banejad, H., Afkhami, A., Rahmani, A., & Khodaveisi, J. (2012). Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Separation and Purification Technology, 95, 10-15. https://doi.org/10.1016/j.seppur.2012.04.021
Pang, Y. L., & Abdullah, A. Z. (2013). Current status of textile industry wastewater management and research progress in malaysia: A review. Clean - Soil, Air, Water, 41(8), 751-764. https://doi.org/10.1002/clen.201000318
Rashid, U., Soltani, S., Al-Resayes, S. I., & Nehdi, I. A. (2018). Metal oxide catalysts for biodiesel production. In Y. Wu (Ed.), Metal oxides in energy technologies (pp. 303-319). Elsevier Inc. https://doi.org/10.1016/b978-0-12-811167-3.00011-0
Santana, C. S., Ramos, M. D. N., Velloso, C. C. V., & Aguiar, A. (2019). Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9), Article 1602. https://doi.org/10.3390/ijerph16091602
Soltani, S., Khanian, N., Choong, T. S. Y., Asim, N., & Zhao, Y. (2021). Microwave-assisted hydrothermal synthesis of sulfonated TiO2-GO core–shell solid spheres as heterogeneous esterification mesoporous catalyst for biodiesel production. Energy Conversion and Management, 238(February), Article 114165. https://doi.org/10.1016/j.enconman.2021.114165
Soltani, S., Khanian, N., Choong, T. S. Y., Rashid, U., Nehdi, I. A., & Alobre, M. M. (2020). PEG-assisted microwave hydrothermal growth of spherical mesoporous Zn-based mixed metal oxide nanocrystalline: Ester production application. Fuel, 279(May), Article 118489. https://doi.org/10.1016/j.fuel.2020.118489
Soltani, S., Rashid, U., Nehdi, I. A., Al-Resayes, S. I., & Al-Muhtaseb, A. H. (2017). Sulfonated mesoporous zinc aluminate catalyst for biodiesel production from high free fatty acid feedstock using microwave heating system. Journal of the Taiwan Institute of Chemical Engineers, 70, 219-228. https://doi.org/10.1016/j.jtice.2016.10.054
Sun, Y., Lyu, S., Brusseau, M. L., Tang, P., Jiang, W., Gu, M., Li, M., Lyu, Y., Qiu, Z., & Sui, Q. (2019). Degradation of trichloroethylene in aqueous solution by nanoscale calcium peroxide in the Fe(II)-based catalytic environments. Separation and Purification Technology, 226(March), 13-21. https://doi.org/10.1016/j.seppur.2019.05.075
Tran, M. H., Nguyen, H. C., Le, T. S., Dang, V. A. D., Cao, T. H., Le, C. K., & Dang, T. D. (2021). Degradation of glyphosate herbicide by an electro-Fenton process using carbon felt cathode. Environmental Technology (United Kingdom), 42(8), 1155-1164. https://doi.org/10.1080/09593330.2019.1660411
Trovó, A. G., Senivs, P., Palmiste, Ü., Sillanpää, M., & Tang, W. Z. (2016). Decolorization kinetics of acid blue 161 by solid peroxides catalyzed by iron in aqueous solution. Desalination and Water Treatment, 57(41), 19344-19356. https://doi.org/10.1080/19443994.2015.1098573
Wang, Q., Tian, S., Cun, J., & Ning, P. (2013). Degradation of methylene blue using a heterogeneous Fenton process catalyzed by ferrocene. Desalination and Water Treatment, 51(28-30), 5821-5830. https://doi.org/10.1080/19443994.2012.763047
Xu, X. R., Li, H. B., Wang, W. H., & Gu, J. D. (2004). Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7), 595-600. https://doi.org/10.1016/j.chemosphere.2004.07.030
Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184. https://doi.org/10.1016/j.cis.2014.04.002
Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer. https://doi.org/10.1007/s13762-018-2130-z
Zhou, C., Gao, N., Deng, Y., Chu, W., Rong, W., & Zhou, S. (2012). Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. Journal of Hazardous Materials, 231, 43-48. https://doi.org/10.1016/j.jhazmat.2012.06.032
ISSN 0128-7680
e-ISSN 2231-8526