e-ISSN 2231-8526
ISSN 0128-7680
Noor Haida Abdul Hamid, Mohd Noor Hisham Mohd Nadzir, Junaidi Omar, Geetha Annavi, Wan Nor Fitri Wan Jaafar and Annas Salleh
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.40
Keywords: Captive, frequency, non-invasive, reproductive, session, stress
Published on: 1 April 2022
Sambar deer are listed as vulnerable and are bred in captivity under governmental management. The success of captive breeding programs varies, and the underlying causes are unclear. The advantage of using non-invasive faecal samples to obtain hormonal profiles without the animal being sedated or restrained has not been tested in sambar deer. This experiment was aimed to study the reproductive and stress behaviours of sambar deer and to measure the levels of reproductive and stress hormones in captive female sambar deer via a non-invasive procedure using faeces samples. Data on reproductive and stress behaviour were collected from six sambar deer for six months. Behaviours were recorded by instantaneous sampling method using direct observation. The reproductive and stress hormones in faecal samples were analysed using ELISA procedures. There are differences in frequency of certain reproductive behaviours recorded within different sessions of data collections while stress behaviour was in the low count and no huge difference in frequency between different sessions. Progesterone metabolites showed some trend of high concentrations in July and started to drop at the end of July till the end of December with constantly negative concentrations. Sambar deer in Zoo Negara can be considered not in stress due to low reading of cortisol concentration even though there was a presence of visitors. In future, it is important to make sure the faecal samples for hormonal analysis are collected daily to look for the pattern of the oestrus cycle in sambar deer.
Alejandro, C. I., Abel, V. M., Jaime, O. P., & Pedro, S.A. (2015). Environmental stress effect on animal reproduction. Advances in Dairy Research, 02(2), 2-5. https://doi.org/10.4172/2329-888x.1000114
Altmann, J. (1974). Observational sampling methods. Animal Behaviour, 49(3), 227-266. https://doi.org/10.1163/156853974x00534
Asher, G. W. (2010). Reproductive cycles of deer. Animal Reproductive Science, 124(3-4),170-5.
Asher, G. W., Fisher, M. W., Berg, D. K., Waldrup, K. A., & Pearse, A. J. (1996). Luteal support of pregnancy in red deer (Cervus elaphus): Effect of cloprostenol, ovariectomy and lutectomy on the viability of the post-implantation embryo. Animal Reproduction Science, 41(2), 141-151.
Blanc, F., & Thériez, M. (1998). Effects of stocking density on the behaviour and growth of farmed red deer hinds. Applied Animal Behaviour Science. 56(2-4), 297-307.
Bowkett, A. E. (2009). Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conservation Biology, 23(3), 773-776. https://doi.org/10.1111/j.1523-1739.2008.01157.x
Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A., & Meyer, J. S. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 147(3), 255-261. https://doi.org/10.1016/j.ygcen.2006.01.005
Gholib, G., Jannah, P. T. M., Wahyuni, S., Rahmi, E., Hanafiah, M., & Adam, M. (2021). Non-invasive measurement of cortisol metabolites in feces as an indicator of stress and its relationship with the number and arrival frequency of visitors in captive sambar deer (Cervus unicolor). In Journal of Physics: Conference Series (Vol. 1882, No. 1, p. 012095). IOP Publishing. https://doi.org/10.1088/1742-6596/1882/1/012095
Gordon, I. (1997). Controlled reproduction in horses, deer, and camelids. Cab International.
Gregorini, P. (2012). Diurnal grazing pattern: Its physiological basis and strategic management. Animal Production Science, 52(7), 416-430. https://doi.org/10.1071/AN11250
Heimbürge, S., Kanitz, E., & Otten, W. (2019). The use of hair cortisol for the assessment of stress in animals. General and Comparative Endocrinology, 270, 10-17. https://doi.org/10.1016/j.ygcen.2018.09.016
Kawanishi, K., Rayan, D. M., Gumal, M. T., & Shepherd, C. R. (2014). Extinction process of the sambar in Peninsular Malaysia. IUCN Deer Specialist Group Newsletter, 26, 48-59
Kersey, D. C., & Dehnhard, M. (2014). The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. General and Comparative Endocrinology, 203, 296-306. https://doi.org/10.1016/j.ygcen.2014.04.022
Korzekwa, A. J., Szczepańska, A., Bogdaszewski, M., Nadolski, P., Malż, P., Giżejewski, Z. (2016). Production of prostaglandins in placentae and corpus luteum in pregnant hinds of red deer (Cervus elaphus). Theriogenology, 85(4), 762-768. https://doi.org/10.1016/j.theriogenology.2015.09.055
Kumar, V., Reddy, V. P., Kokkiligadda, A., & Shivaji, S. (2014). Non-invasive assessment of reproductive status and stress in captive Asian elephants in three south Indian zoos. General and Comparative Endocrinology, 201, 37-44. https://doi.org/10.1016/j.ygcen.2014.03.024
Kuo, M. T., Jong, D. S., & Lai, W. S. (2011). A biological validation procedure for the measurements of fecal outputs and fecal cortisol metabolites in male Syrian hamsters. The Chinese Journal of Physiology, 54(5), 347-55.
Mcphee, M. E., & Calrstead, K. (2010). The importance of maintaining natural behaviors in captive mammals. In D. G. Kleiman, M. Allen, & K. Thompson (Eds.), Wild mammals in captivity (pp. 303-313). University of Chicago Press.
Md-Zain, B. M., Sha`ari, N. A., Mohd-Zaki, M., Ruslin, F., Idris, N. I., Kadderi, M. D., & Idris, W. M. R. (2010). A comprehensive population survey and daily activity budget on Long-tail Macaques of Universiti Kebangsaan Malaysia. Journal of Biological Sciences, 10(7), 608-615. https://doi.org/10.3923/jbs.2010.608.615
Nie, G., Sharp, D. C., Robinson, G., Cleaver, B. D., & Porter, M. B. (2007). Clinical aspects of seasonality in mares. In Current Therapy in Large Animal Theriogenology (pp. 68-73). WB Saunders.
Palme, R., Touma, C., Arias, N., Dominchin, M. F., & Lepschy, M. (2013). Steroid extraction: Get the best out of faecal samples. Veterinary Medicine Austria, 100(9-10), 238-246.
Pavitt, A. T., Pemberton, J. M., Kruuk, L. E. B., & Walling, C. A. (2016). Testosterone and cortisol concentrations vary with reproductive status in wild female red deer. Ecology and Evolution, 6(4), 1163-1172. https://doi.org/10.1002/ece3.1945
PERHILITAN. (2017). Red list of mammals for Peninsular Malaysia (Version 2.0). Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia. http://www.wildlife.gov.my/images/document/penerbitan/lainlain/REDLIST_OL%20(M)_2018%20edited.pdf
Peter, I. D., Haron, A. W., Jesse, F. F. A., Ajat, M., Han, M. H. W., Fitri, W. N., Yahaya, M. S., & Alamaary, M. S. M. (2018). Opportunities and challenges associated with fecal progesterone metabolite analysis. Veterinary World, 11(10), 1466-1472. https://doi.org/10.14202/vetworld.2018.1466-1472
Pollard, J. C., & Littlejohn, R. P. (1998). Effects of winter housing, exercise, and dietary treatments on the behaviour and welfare of red deer (Cervus elaphus) hinds. Animal Welfare, 7(1), 45-56.
Schwarzenberger, F., Möstl, E., Palme, R., & Bamberg, E. (1996). Faecal steroid analysis for non-invasive monitoring of reproductive status in farm, wild and zoo animals. Animal Reproduction Science, 42(1-4), 515-526. https://doi.org/10.1016/0378-4320(96)01561-8
Semiadi, G., Muir, P. D., & Barry, T. N. (1994). General biology of sambar deer (Cervus unicolor) in captivity. New Zealand Journal of Agricultural Research, 37(1), 79-85. https://doi.org/10.1080/00288233.1994.9513043
Sherwen, S. L., & Hemsworth, P. H. (2019). The visitor effect on zoo animals: Implications and opportunities for zoo animal welfare. Animals, 9(6), Article 366. https://doi.org/10.3390/ani9060366
Timmins, R., Kawanishi, K., Giman, B, Lynam, A., Chan, B., Steinmetz, R., Baral, H. S., & Kumar, N. S. (2015). Rusa unicolor (errata version published in 2015). The IUCN Red List of Threatened Species 2015: e.T41790A85628124. IUCN 2022. https://www.iucnredlist.org/species/44703/22153828
Ventrella, D., Elmi, A., Bertocchi, M., Aniballi, C., Parmeggiani, A., Govoni, N., & Bacci, M. L. (2020). Progesterone and cortisol levels in blood and hair of wild pregnant red deer (Cervus elaphus) hinds. Animals, 10(1), Article 143. https://doi.org/10.3390/ani10010143
Whittington, C. J., & Chamove, A. S. (1995). Effects of visual cover on farmed red deer behaviour. Applied Animal Behaviour Science, 45(3-4), 309-314. https://doi.org/10.1016/0168-1591(95)00595-J
Wingfield, J. C., & Kitaysky, A. S. (2002). Endocrine responses to unpredictable environmental events: Stress or anti-stress hormones. Integrative and Comparative Biology, 42(3), 600-609. https://doi.org/10.1093/icb/42.3.600
ISSN 0128-7680
e-ISSN 2231-8526