e-ISSN 2231-8526
ISSN 0128-7680
Suman Lata and Harish Kumar Verma
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.05
Keywords: Intelligent greenhouse, sensor node, sensor, wireless sensor network
Published on: 1 April 2022
One of the possible solutions for meeting the rising food demands is to opt for wireless sensor networks (WSN) monitored intelligent greenhouses. Such greenhouses require wireless sensor nodes rather than individual sensors to monitor and control the various parameters responsible for the growth of the plants. The appropriate selection of the number of wireless sensor nodes and their placement is crucial for optimizing the cost of the wireless sensor network by minimizing the number of sensor nodes as well as the measurement error. This paper extends the two techniques, namely, equal step (ES) and equal segment area (ESA) techniques, reported earlier for the selection of the number and locations of sensors to suit multi-sensor nodes inside a greenhouse. It also compares these techniques with the equal-spacing approach. The multi-sensor nodes considered here have temperature and luminosity sensors. Initial locations of the multi-sensor nodes have been fixed on the basis of temperature profile on the premise that temperature is the most important parameter for the growth of the plants. Evaluation of these techniques has been done on the basis of the root of the sum of square errors (RSSE) of the individual parameters. The ESA technique has been found to be better than the ES technique for the assumed temperature and luminosity profiles. In the future, this work may be extended to other situations where other than temperature is the most important parameter. The other direction in which the work can be extended may be considering the 2D or even 3D distribution of sensors.
Ahonen, T., Virrankoski, R., & Elmusrati, M. (2008). Greenhouse monitoring with wireless sensor network. In Proceedings of International Conference on Mechatronic and Embedded Systems and Applications (pp. 403-408). IEEE Publishing. http://doi.org/10.1109/mesa.2008.4735744
Akkaş, M. A., & Sokullu, R. (2017). An IoT-based greenhouse monitoring system with Micaz motes. Procedia Computer Science, 113, 603-608. https://doi.org/10.1016/j.procs.2017.08.300
Balendonck, J., Van Os, E. A., Van der Schoor, R., Van Tuijl, B. A. J., & Keizer, L. C. P. (2010). Monitoring spatial and temporal distribution of temperature and relative humidity in greenhouses based on wireless sensor technology. In International Conference on Agricultural Engineering-AgEng (pp. 443-452). CABI Publishing.
Barker, J. C. (1990). Effects of day and night humidity on yield and fruit quality of glasshouse tomatoes (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 65(3), 323-331. http://doi.org/10.1080/00221589.1990.11516061
Burrell, J., Brooke, T., & Beckwith, R. (2004). Vineyard computing: Sensor networks in agriculture production. IEEE Pervasive Computing, 3(1), 38-45. http://doi.org/10.1109/MPRV.2004.1269130
Harris, N., Cranny, A., Rivers, M., Smettem, K., & Barrett-Lennard, E. G. (2016). Application of distributed wireless chloride sensors to environmental monitoring: Initial results. IEEE transactions on Instrumentation Measurements, 65(4), 736-743. https://doi.org/10.1109/TIM.2015.2490838
Holder, R., & Cockshull, K. E. (1990). Effects of humidity alone, on the growth and yield of glasshouse tomatoes. Journal of Horticultural Science, 65(1), 31-39. https://doi.org/10.1080/00221589.1990. 11516025
Kareem, O. S., & Qaqos, N. N. (2019). Real-time implementation of greenhouse monitoring system based on wireless sensor network. International Journal of Recent Technology and Engineering (IJRTE), 8(2S2), 215-219. http://doi.org/10.35940/ijrte.B1039.0782S219
Kochhar, A., & Kumar, N. (2019). Wireless sensor networks for greenhouses: An end-to-end review. Computers and Electronics in Agriculture, 163, Article 104877. https://doi.org/10.1016/j.compag.2019.104877
Konstantinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design optimization of wireless sensor networks using genetic algorithms. Computer Networks, 51(4), 1031-1051. https://doi.org/10.1016/j.comnet.2006.06.013
Konstantinos, P. F., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70-81. http://dx.doi.org/10.1016/j.biosystemseng.2016.11.005
Lamprinos, I., Charalambides, M., & Chouchoulis, M. (2015). Greenhouse monitoring system based on a wireless sensor network. In Proceedings of the 2nd International Electronic Conference on Sensors and Applications (pp. 1-6). MDPI Publishing. http://dx.doi.org/10.3390/ecsa-2-E009
Lata, S., & Verma, H. K. (2017) Selection of sensor number and locations in intelligent greenhouse. In Proceedings of 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON-2017) (pp. 56-62). IEEE Publishing. https://doi.org/10.1109/CATCON.2017.8280184
Lata, S., & Verma, H. K. (2018). Selection of number and locations of temperature and luminosity sensors in intelligent greenhouse. International Journal of Applied Research, 13(12), 10965-10971.
Lata, S., & Verma, H. K. (2019). Techniques and algorithms for selection of number and locations of temperature sensors for greenhouse. Pertanika Journal of Science and Technology, 27(4), 2153-2172.
Lata, S., Sah, R. K., Singh, S., & Jaiswal, S. P. (2020). Greenhouse monitoring using WSN and SENSEnuts nodes. In AIP Conference Proceedings (Vol. 2294). AIP Publishing. https://doi.org/10.1063/5.0031711
Lixuan, W., Hong, S., Minzan, L., Meng, Z., & Yi, Z. (2014). An on-line monitoring system of crop growth in greenhouse. In International Conference on Computer and Computing Technologies in Agriculture (pp. 627-637). Springer. https://doi.org/10.1007/978-3-319-19620-6_70
Mancuso, M., & Bustaffa, F. (2006). A wireless sensors network for monitoring environmental variables in a tomato greenhouse. In IEEE International Workshop on Factory Communication Systems (Vol. 10). IEEE Publishing. https://doi.org/10.1109/WFCS.2006.1704135
Mekki, M., Abdallah, O., Amin, M. B., Eltayeb, M., Abdalfatah, T., & Babiker, A. (2015). Greenhouse monitoring and control system based on wireless sensor network. In 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE) (pp. 384-387). IEEE Publishing. http://doi.org/10.1109/ICCNEEE.2015.7381396
Nasre, A., Barai, R., & Walde, P. (2014). Design of greenhouse control system based on wireless sensor networks using MATLAB. Discovery, 19(57), 56-58.
Pahuja, R., Verma, H. K., & Uddin, M. (2013). A wireless sensor network for greenhouse climate control. IEEE Pervasive Computing, 12(2), 49-58. http:// doi.org/10.1109/MPRV.2013.26
Park, D. H., & Park, J. W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640-3651. https://doi.org/10.3390/s110403640
Quynh, T. N., Le Manh, N., & Nguyen, K. N. (2015). Multipath RPL protocols for greenhouse environment monitoring system based on Internet of Things. In 12th International Conference on Electrical Engineering /Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1-6). IEEE Publishing.
Raheemah, A., Sabri, N., Salim, M. S., Ehkan, P., & Badlishah, A. R. (2016). New empirical path loss model for wireless sensor networks in mango greenhouses. Computers and Electronics in Agriculture, 127, 553-556. https://doi.org/10.1016/j.compag.2016.07.011
Ranganathan, J. (2014). The global food challenge explained in 18 graphics. World Resources Institute.
Ryu, M. J., Ryu, D. K., Chung, S. O., Hur, Y. K., Hur, S. O., Hong, S. J., & Kim, H. H. (2014). Spatial, vertical, and temporal variability of ambient environments in strawberry and tomato greenhouses in winter. Journal of Bio-Systems Engineering, 39(1), 47-56. http://dx.doi.org/10.5307/jbe.2014.39.1.047
Salleh, A., Ismail, M. K., Mohamad, N. R., Aziz, M. A. A. A., Othman, M. A., & Misran, M. H. (2013). Development of greenhouse monitoring using wireless sensor network through Zigbee technology. International Journal of Engineering Science Invention, 2(7), 06-12.
Zhang, Q., Yang, X. L., Zhou, Y. M., Wang, L. R., & Guo, X. S. (2007). A wireless solution for greenhouse monitoring and control system based on Zigbee technology. Journal of Zhejiang University Science A, 8(10), 1584-1587. https://doi.org/10.1631/jzus.2007.A1584
Zolnier, S., Gates, R. S., Buxton, J., & Mach, C. (2000). Psychro-metric and ventilation constraints for vapor pressure deficit control. Computers and Electronics in Agriculture, 26(3), 343-359. https://doi.org/10.1016/S0168-1699(00)00084-3
Zorzeto, T. Q., Leal, P. A. M., Nunes, E. F., & de Araujo, H. F. (2014). Homogeneity of temperature and relative humidity of air in greenhouse. In 2nd International Conference on Agriculture and Biotechnology IPCBEE (pp. 25-29). IACSIT Press. http://doi.org/10.7763/IPCBEE. 2014.V79.5
Zou, W., Yao, F., Zhang, B., He, C., & Guan, Z. (2017). Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm. Neurocomputing, 249, 72-85. https: //doi.org/10.1016/j.neucom.2017.03.02
ISSN 0128-7680
e-ISSN 2231-8526