e-ISSN 2231-8526
ISSN 0128-7680
Ignatia Justine, Grace Joy Wei Lie Chin, Wilson Thau Lym Yong and Mailin Misson
Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022
DOI: https://doi.org/10.47836/pjst.30.4.10
Keywords: Chemical oxygen demand, lipid production, palm oil mill effluent, Rhodotorula toruloides, waste treatment
Published on: 28 September 2022
Using Palm Oil Mill Effluent (POME) as a medium for culturing oleaginous yeast is advantageous for simultaneous lipid production and waste removal. The organic compounds in POME can be utilised as a nutrient source for yeast growth. Rhodotorula toruloides yeast was cultivated in filtered and unfiltered raw POME as growth media in this study. The yeast growth, pH changes in media, lipid production and removal of chemical oxygen demand (COD) of Rhodotorula toruloides cultivated in POME were examined and compared to Rhodotorula toruloides grown in yeast peptone dextrose (YPD) control media. The COD level of filtered POME was reduced by nearly 50% after filtration. The biomass concentration of Rhodotorula toruloides in filtered POME surpassed the other media in the following order: filtered POME > YPD > unfiltered POME (152 mg/ml > 121 mg/ml > 37 mg/ml). The filtered POME was found favourable for yeast growth due to the minimal amount of colloidal particles and suspended solids. Meanwhile, the lipid production (4.51 %) in filtered POME was 4.8-fold higher than in control media. The water analysis indicated about 43% of COD reduction, signifying the ability of Rhodotorula toruloides to utilise nutrient components present in POME for growth. This study provides insightful knowledge on the utilisation of oleaginous yeast for simultaneous green waste disposal and sustainable microbial oil production.
Abdurahman, N. H., Rosli, Y. M., Azhari, N. H., & Tam, S. F. (2011). Biomethanation of palm oil mill effluent (POME) by membrane anaerobic system (MAS) using POME as a substrate. International Journal of Chemical and Molecular Engineering, 5(3), 220-225.
Abdulsalam, M., Man, H. C., Idris, A. I., Yunos, K. F. & Abidin, Z. Z. (2018). Treatment of palm oil mill effluent using membrane bioreactor: Novel processes and their major drawbacks. Water, 10(9), 1165. https://doi.org/10.3390/w10091165
Amat, A. N. A., Tan, Y. H., Lau, W. J., Lai, G. S., Ong, C. S., Mokhtar, N. M., Sani, N. A. A., Ismail, A. F., Goh, P. S., Chong, K. C., & Lai, S. O. (2015). Tackling colour issue of anaerobically treated palm oil mill effluent using membrane technology. Journal of Water Process Engineering, 8, 221-226. https://doi.org/10.1016/j.jwpe.2015.10.010
Arous, F., Frikha, F., Triantaphyllidou, I. E., Aggelis, G., Nasri, M., & Mechichi, T. (2016). Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. Journal of Cleaner Production, 133, 899-909. https://doi.org/10.1016/j.jclepro.2016.06.040
Arous, F., Jaouani, A., & Mechichi, T. (2019). Oleaginous microorganisms for simultaneous biodiesel production and wastewater treatment. In M. P. Shah and S. Rodriguez-Couto (Eds). Microbial Wastewater Treatment (pp.153-174). Elsevier. https://doi.org/10.1016/b978-0-12-816809-7.00008-7
Bala, J. D., Lalung, J., Al-Gheethi, A. A. S., Hossain, K., & Ismail, N. (2018). Microbiota of palm oil mill wastewater in Malaysia. Tropical Life Sciences Research, 29(2), 131-163. https://doi.org/10.21315/tlsr2018.29.2.10
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Cheirsilp, B., & Louhasakul, Y. (2013). Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresource Technology, 142, 329-337. https://doi.org/10.1016/j.biortech.2013.05.012
Cheng, J., Zhu, X., Ni, J., & Borthwick, A. (2010). Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters. Bioresource Technology, 101(8), 2729-2734. https://doi.org/10.1016/j.biortech.2009.12.017
Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S., & Chin, K. L. (2013). Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia perspective. Renewable and Sustainable Energy Reviews, 26, 717-726.
Cordeiro, R., S., Vaz, I. C., Magalhaes, S., & Barbosa, F. A. (2017). Effects of nutritional conditions on lipid production by cyanobacteria. Anais da Academia Brasileira de Ciências, 89(3), 2021-2031. https://doi.org/10.1590/0001-3765201720150707
Department of Environment. (2011). Revised Standard Methods (1985) for analysis of rubber & palm oil mill effluent (3rd edition). Ministry of Natural Resources and Environment. https://enviro2.doe.gov.my/ekmc/wp-content/uploads/2016/10/CETAK_REVISED_PINDA-4_14.12.2011-28129.pdf
Dias, B., Lopes, M., Ramôa, R., Pereira, A. S., & Belo, I. (2021). Candida tropicalis as a promising oleaginous yeast for olive mill wastewater bioconversion. Energies, 14(3), Article 640. https://doi.org/10.3390/en14030640
Foo, K. Y., & Hameed, B. H. (2010). Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste. Renewable and Sustainable Energy Reviews, 14(5), 1445-1452. https://doi.org/10.1016/j.rser.2010.01.015
Gientka, I., Kieliszek, M., Jermacz, K., & Błażejak, S. (2017). Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. BioMed Research International, Article 6061042. https://doi.org/10.1155/2017/6061042
Green application and toxic risk of used diaper and food waste as growth substitute for sustainable cultivation of oyster mushroom (Pleurotus ostreatus). Journal of Cleaner Production, 268, Article 122272. https://doi.org/10.1016/j.jclepro.2020.122272
Hahn-Hägerdal, B., Karhumaa, K., Larsson, C. U., Gorwa-Grauslund, M., Görgens, J., & van Zyl, W. H. (2005). Role of cultivation media in the development of yeast strains for large scale industrial use. Microbial Cell Factories, 4, Article 31. http://dx.doi.org/10.1186/1475-2859-4-31. https://doi.org/10.1016/j.rser.2013.06.008
Islam, M. A., Yousuf, A., Karim, A., Pirozzi, D., Khan, M. R., & Wahid, Z. A. (2018). Bioremediation of palm oil mill effluent and lipid production by Lipomyces starkeyi: A combined approach. Journal of Cleaner Production, 172, 1779-1787. https://doi.org/10.1016/j.jclepro.2017.12.012
Jiru, T. M., Groenewald, M., Pohl, C., Steyn, L., Kiggundu, N., & Abate, D. (2017). Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech 7(2), Article 145. https://doi.org/10.1007/s13205-017-0769-7
Kaman, S. P. D., Tan, I. A. W., & Lim, L. L. P. (2016). Palm oil mill effluent treatment using coconut shell-based activated carbon: Adsorption equilibrium and isotherm. MATEC Web of Conferences, 87, Article 03009. https://doi.org/10.1051/matecconf/20178703009
Kamyab, H., Chelliapan, S., Shahbazian-Yassar, R., Din, M. F. M., Khademi, T., Kumar, A., & Rezania, S. (2017). Evaluation of lipid content in microalgae biomass using palm oil mill effluent (POME). JOM, 69, 1361-1367. https://doi.org/10.1007/s11837-017-2428-1
Karim, A., Islam, M. A., Mishra, P., Muzahid, A. J. M., Yousuf, A., Khan, M. M. R., & Faizal, C. K. M. (2021). Yeast and bacteria co-culture-based lipid production through bioremediation of palm oil mill effluent: A statistical optimization. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01275-6
Kitcha, S., & Cheirsilp, B. (2011). Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia, 9, 274-282. https://doi.org/10.1016/j.egypro.2011.09.029
Kot, A. M., Błażejak, S., Kieliszek, M., Gientka, I., & Bryś, J. (2019). Simultaneous production of lipids and carotenoids by the red yeast Rhodotorula from waste glycerol fraction and potato wastewater. Applied Biochemistry and Biotechnology, 189, 589-607. https://doi.org/10.1007/s12010-019-03023-z
Lee, C. H., Chong, D. Y. L., Hemmati, S., Elnegihi, M. M., Foo, D. C. Y., How, B. S., & Yoo, C. (2020). A P-graph approach for the synthesis of national-wide bio-hydrogen network from palm oil mill effluent. International Journal of Hydrogen Energy, 45(35), 17200-17219. https://doi.org/10.1016/j.ijhydene.2020.04.179
Leiva-Candia, D. E., Pinzi, S., Redel-Macías, M. D., Koutinas, A., Webb, C., & Dorado, M. P. (2014). The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 123, 33-42. https://doi.org/10.1016/j.fuel.2014.01.054
Li, Y., Zhao, Z. K., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312-317. https://doi.org/10.1016/j.enzmictec.2007.02.008
Liang, M., & Jiang, J. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395-408. https://doi.org/10.1016/j.plipres.2013.05.002
Liu, Y., Koh, C. M. J., Yap, S. A., Du, M., Hlaing, M. M., & Ji, L. (2018). Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis. BMC Microbiology, 18, Article 14. https://doi.org/10.1186/s12866-018-1151-6
Lokman, N. A., Ithnin, A. M., Ramli, M. N., Bahar, N. D., & Yahya, W. J. (2019). Effect of filtered palm oil mill effluent (POME) via close-loop in-line microbubbles treatment chamber for biochemical oxygen demand (BOD) treatment. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 62(1), 10-19.
Louhasakul, Y., Cheirsilp, B., Intasit, R., Maneerat, S., & Saimmai, A. (2020). Enhanced valorization of industrial wastes for biodiesel feedstocks and biocatalyst by lipolytic oleaginous yeast and biosurfactant-producing bacteria. International Biodeterioration & Biodegradation, 148, Article 104911. https://doi.org/10.1016/j.ibiod.2020.104911
Ma, N. L., Khoo, S. C., Loke, L. K., Lam, S. S., & Tan, S. H. (2019). Growth media derived from solid waste for orchid Dendrobium kingianum culture. Malaysian Applied Biology, 48(1), 73-78.
Ma, N. L., Khoo, S. C., Peng, W., Ng, C. M., Teh, C. H., Park, Y. K., Lam, S. S. (2020). Green application and toxic risk of used diaper and food waste as growth substitute for sustainable cultivation of oyster mushroom (Pleurotus ostreatus). Journal of Cleaner Production, 268, 122272. https://doi.org/10.1016/j.chemosphere.2021.131477
Marjakangas, J. M., Lakaniemi, A., Koskinen, P. E., Chang, J., & Puhakka, J. A. (2015). Lipid production by eukaryotic microorganisms isolated from palm oil mill effluent. Biochemical Engineering Journal, 99, 48-54. https://doi.org/10.1016/j.bej.2015.03.006
Matsakas, L., Giannakou, M., & Vörös, D. (2017). Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Electronic Journal of Biotechnology, 30, 95-102. https://doi.org/10.1016/j.ejbt.2017.10.003
Nam, W. L, Phang, X. Y., Su, M. H., Liew, R. K., Ma, N. L., Rosli, M. H. N., Lam, S. S. (2018). Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of oyster mushroom (Pleurotus ostreatus). Science of The Total Environment, 624, 9-16. https://doi.org/10.1016/j.scitotenv.2017.12.108
Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., Souza, C. O. de, Vich, D. V., Carvalho, G. C. de, & Nascimento, M. A. (2013). Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Research, 6(1):1-13. https://doi.org/10.1007/s12155-012-9222-2
Qin, L., Liu, L., Zeng, A. P., & Wei, D. (2017). From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts. Bioresource Technology, 245(Part B), 1507-1519. https://doi.org/10.1016/j.biortech.2017.05.163
Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnology and Bioprocess Engineering, 16, 23-33. https://doi.org/10.1007/s12257-010-0083-2
Sajjad, A. A., Teow, Y. H., & Hussain, A. W. M. (2018). Sustainable approach of recycling palm oil mill effluent (POME) using integrated biofilm/membrane filtration system for internal plant usage. Jurnal Teknologi, 80(4), 165-172. https://doi.org/10.11113/jt.v80.11054
Shahbandeh, M. (2021, January 27). Palm oil: Global production volume 2012/13-2020/21. Statista. https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide/
Soleimaninanadegani, M., & Manshad, S. (2014). Enhancement of biodegradation of palm oil mill effluents by local isolated microorganisms. International Scholarly Research Notices, 2014, Article 727049. https://doi.org/10.1155/2014/727049
Xiong, L., Huang, C., Chen, X. F., Hu, W. X., Li, X. M., Qi, G. X., Wang, C., Lin, X. Q., Li, H. L., & Chen, X. D. (2016). Comparison of fermentation by mono-culture and co-culture of oleaginous yeasts for ABE (acetone-butanol-ethanol) fermentation wastewater treatment. Journal of Environmental Chemical Engineering, 4(4), 3803-3809. https://doi.org/10.1016/j.jece.2016.08.025
Yao, S., Xiong, L., Chen, X., Li, H., & Chen, X. (2020). Comparative study of lipid production from cellulosic ethanol fermentation wastewaters by four oleaginous yeasts. Preparative Biochemistry & Biotechnology, 51(7), 669-677. https://doi.org/10.1080/10826068.2020.1852416
Yu, D., Wang, X., Fan, X., Ren, H., Hu, S., Wang, L., Shi, Y., Liu, N., & Qiao, N. (2018). Refined soybean oil wastewater treatment and its utilization for lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnology for Biofuels, 11, Article 299. https://doi.org/10.1186/s13068-018-1306-6
ISSN 0128-7680
e-ISSN 2231-8526