e-ISSN 2231-8526
ISSN 0128-7680
Kai Ling Chai, Min Min Aung, Hong Ngee Lim, Ikhwan Syafiq Mohd Noor, Luqman Chuah Abdullah and Hiroshi Uyama
Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022
DOI: https://doi.org/10.47836/pjst.30.3.21
Keywords: Jatropha oil, polyurethane acrylate
Published on: 25 May 2022
Bio-based polymer is a promising candidate to substitute conventional petroleum-derived polymer as it is sustainably produced from renewable resources, which helps reduce the production process’ carbon footprint. It also helps reduces humankind’s dependability on fossil fuel-based feedstock. In this work, a sustainable jatropha oil-based polyurethane acrylate (PUA) was successfully prepared and synthesised using a 3-steps process; epoxidation (formation of an epoxy group), hydroxylation (addition of–OH group to opened ring), and acrylation (addition of acrylate group into polyol). The yellowish PUA prepared has a gel consistency, which is sticky and slightly runny. The PUA was characterised by using wet chemical tests such as oxirane oxygen content (OOC), acid value (AV), hydroxyl number (OHV) and iodine value. OOC value for the PUA synthesised was 4.23 % at the 5 hr reaction time. At the same time, the Epoxidised jatropha oil (EJO) used to prepare polyol records a hydroxyl number of hydroxyl 185.81 mg KOH/g and an acid value of 1.06. The polyol prepared was mixed with 2, 4-toluene-diisocyanate (TDI) and Hydroetyhlmethacrylate (HEMA) to produce PUA. The PUA was characterised by thermogravimetry analysis (TGA) and electrochemical impedance spectroscopy (EIS). TGA analysis shows that the polymer is stable up to 373 K, whereas the EIS analysis records an ionic conductivity of (5.60±0.03) × 10-6 S cm-1. This polymer’s great thermal stability properties make it suitable for outdoor application where high temperature due to sun exposure is common. Furthermore, PUA prepared gel-like properties to make it a suitable candidate for preparing a gel polymer electrolyte.
Adachi, T., & Sakka, S. (1988). The role of N,N-dimethylformamide, a DCCA, in the formation of silica gel monoliths by sol-gel method. Journal of Non-Crystalline Solids, 99(1), 118-128. https://doi.org/10.1016/0022-3093(88)90464-4
Adam, N. I., Hanibah, H., Subban, R. H. Y., Kassim, M., Mobarak, N. N., Ahmad, A., Badri, K. H., & Su’ait, M. S. (2020). Palm-based cationic polyurethane membranes for solid polymer electrolytes application: A physico-chemical characteristics studies of chain-extended cationic polyurethane. Industrial Crops and Products, 155, Article 112757. https://doi.org/10.1016/j.indcrop.2020.112757
Ahvazi, B., Cloutier, É., Wojciechowicz, O., & Ngo, T. D. (2016). Lignin profiling: A guide for selecting appropriate lignins as precursors in biomaterials development. ACS Sustainable Chemistry and Engineering, 4(10), 5090-5105. https://doi.org/10.1021/acssuschemeng.6b00873
Akbar, E., Yaakob, Z., Kamarudin, S. K., Ismail, M., & Salimon, J. (2009). Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. European Journal of Scientific Research, 29(3), 396-403.
Amri, M. R., Al-Edrus, S. S. O., Guan, C. T., Yasin, F. M., & Hua, L. S. (2021). Jatropha Oil as a substituent for palm oil in biobased polyurethane. International Journal of Polymer Science, 2021, Article 6655936. https://doi.org/10.1155/2021/6655936
Ainie, K., Siew, W. L., & Tan, Y. A. (2004). Test methods - A compendium of test on palm oil products, palm kernel products, fatty acids, food related products and others. Malaysian Palm Oil Board.
Chai, K. L., Noor, I. M., Aung, M. M., Abdullah, L. C., & Kufian, M. Z. (2020). Non-edible oil based polyurethane acrylate with tetrabutylammonium iodide gel polymer electrolytes for dye-sensitized solar cells. Solar Energy, 208, 457-468. https://doi.org/10.1016/j.solener.2020.08.020
Chua, K. Y., Azzahari, A. D., Abouloula, C. N., Sonsudin, F., Shahabudin, N., & Yahya, R. (2020). Cellulose-based polymer electrolyte derived from waste coconut husk: Residual lignin as a natural plasticizer. Journal of Polymer Research, 27(5), 1-14. https://doi.org/10.1007/s10965-020-02110-8
Daud, F. N., Ahmad, A., & Badri, K. H. (2015). Characterisations of palm-based polyurethane solid polymer electrolyte. In Advanced Materials Research (Vol. 1107, pp. 163-167). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/amr.1107.163
Desappan, V., Priyadarshini, M., Preethi, K. K., Kumar, K. T., Vediappan, K., Chandrabose, R. S., & Viswanathan, J. (2019). Thermal and electrochemical investigation of neem oil based novel polyurethane/polyvinylpyrrolidone solid polymer electrolytes. Analytical and Bioanalytical Electrochemistry, 11(7), 851-876.
Du, Z., Su, Y., Qu, Y., Zhao, L., Jia, X., Mo, Y., Yu, F., Du, J., & Chen, Y. (2019). A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochimica Acta, 299, 19-26. https://doi.org/10.1016/j.electacta.2018.12.173
Fu, J., Yu, H., Wang, L., Lin, L., & Khan, R. U. (2020). Preparation and properties of UV-curable hyperbranched polyurethane acrylate hard coatings. Progress in Organic Coatings, 144, Article 105635. https://doi.org/10.1016/j.porgcoat.2020.105635
Goud, V. V., Dinda, S., Patwardhan, A. V., & Pradhan, N. C. (2010). Epoxidation of Jatropha (Jatropha curcas) oil by peroxyacids. Asia-Pacific Journal of Chemical Engineering, 5(2), 346-354. https://doi.org/10.1002/apj.285
Hazmi, A. S. A., Aung, M. M., Abdullah, L. C., Salleh, M. Z., & Mahmood, M. H. (2013). Producing jatropha oil-based polyol via epoxidation and ring opening. Industrial Crops and Products, 50, 563-567. https://doi.org/10.1016/j.indcrop.2013.08.003
Hernández-Cruz, M. C., Meza-Gordillo, R., Domínguez, Z., Rosales-Quintero, A., Abud-Archila, M., Ayora-Talavera, T., & Villalobos-Maldonado, J. J. (2021). Optimization and characterization of in situ epoxidation of chicken fat with peracetic acid. Fuel, 285, Article 119127. https://doi.org/10.1016/j.fuel.2020.119127
Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543-597. https://doi.org/10.1007/s10811-010-9632-5
Huo, P., Ni, S., Hou, P., Xun, Z., Liu, Y., & Gu, J. (2019). A crosslinked soybean protein isolate gel polymer electrolyte based on neutral aqueous electrolyte for a high-energy-density supercapacitor. Polymers, 11(5), Article 863. https://doi.org/10.3390/polym11050863
Ibrahim, S., Ahmad, A., & Mohamed, N. S. (2015). Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes. Bulletin of Materials Science, 38(5), 1155-1161. https://doi.org/10.1007/s12034-015-0995-8
Ibrahim, S., Ahmad, A., & Mohamed, N. S. (2018). Comprehensive studies on polymer electrolyte and dye-sensitized solar cell developed using castor oil-based polyurethane. Journal of Solid State Electrochemistry, 22(2), 461-470. https://doi.org/10.1007/s10008-017-3775-0
Ling, C. K., Aung, M. M., Rayung, M., Abdullah, L. C., Lim, H. N., & Noor, I. S. M. (2019). Performance of ionic transport properties in vegetable oil-based polyurethane acrylate gel polymer electrolyte. ACS Omega, 4(2), 2554-2564. https://doi.org/10.1021/acsomega.8b02100
Lobregas, M. O. S., & Camacho, D. H. (2019). Gel polymer electrolyte system based on starch grafted with ionic liquid: Synthesis, characterization and its application in dye-sensitized solar cell. Electrochimica Acta, 298, 219-228. https://doi.org/10.1016/j.electacta.2018.12.090
Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3(1), 77-96. https://doi.org/10.1007/s41783-018-0049-y
Mendes-Felipe, C., Barbosa, J. C., Gonçalves, S., Pereira, N., Costa, C. M., Vilas-Vilela, J. L., & Lanceros-Mendez, S. (2020). High dielectric constant UV curable polyurethane acrylate/indium tin oxide composites for capacitive sensing. Composites Science and Technology, 199, Article 108363. https://doi.org/10.1016/j.compscitech.2020.108363
Meyer, P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W., & Tongurai, C. (2008). Epoxidation of soybean oil and Jatropha oil. Thammasat International Journal of Science and Technology, 13, 1-5.
Mohamed, M., Assem, Y., & Ramadan, A. (2020). Soybean oil-based polyol as a modified natural binder for polyurethane turf-adhesive. Egyptian Journal of Chemistry, 64(2), 4-6. https://doi.org/10.21608/ejchem.2020.31470.2670
Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites. CRC press. https://doi.org/10.1201/9780203508206.ch1
Mohiuddin, M., Kumar, B., & Haque, S. (2017). Biopolymer composites in photovoltaics and photodetectors. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J. J. Cabibihan & M. A. AlMaadeed (Eds.), Biopolymer composites in electronics (pp. 459-486). Elsevier. https://doi.org/10.1016/B978-0-12-809261-3.00017-6
Mudri, N. H., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Biak, D. R. A., & Rayung, M. (2020). Comparative study of aromatic and cycloaliphatic isocyanate effects on physico-chemical properties of bio-based polyurethane acrylate coatings. Polymers, 12(7), Article 1494. https://doi.org/10.3390/polym12071494
Nagalakshmaiah, M., Afrin, S., Malladi, R. P., Elkoun, S., Robert, M., Ansari, M. A., Svedberg, A., & Karim, Z. (2018). Biocomposites: Present trends and challenges for the future. In Green composites for automotive applications (pp. 197-215). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102177-4.00009-4
Nan, J., Zhang, G., Wang, L., Wang, H., Chu, F., & Wang, C. (2020). Preparation of ionic liquid-based gel electrolytes and application in supercapacitors. Chemistry and Industry of Forest Products, 40(4), 17-23. https://doi.org/10.3969/j.issn.0253-2417.2020.04.003
Ogino, M., Kotatha, D., Torii, Y., Shinomiya, K., Uchida, S., Furuike, T., Tamura, H., & Ishikawa, M. (2020). Preparation and electrochemical performance of chitosan-based gel polymer electrolyte containing ionic liquid for non-aqueous electric double layer capacitor. Electrochemistry, 88(3), 132-138. https://doi.org/10.5796/electrochemistry.20-63009
Park, C. K., Lee, J. H., Kim, I. S., & Kim, S. H. (2020). Castor oil-based polyols with gradually increasing functionalities for biopolyurethane synthesis. Journal of Applied Polymer Science, 137(4), Article 48304. https://doi.org/10.1002/app.48304
Rayung, M., Aung, M. M., Ahmad, A., Su’ait, M. S., Abdullah, L. C., & Jamil, S. N. A. M. (2019). Characteristics of ionically conducting jatropha oil-based polyurethane acrylate gel electrolyte doped with potassium iodide. Materials Chemistry and Physics, 222, 110-117. https://doi.org/10.1016/j.matchemphys.2018.10.009
Rayung, M., Aung, M. M., Su’Ait, M. S., Abdullah, L. C., Ahmad, A., & Lim, H. N. (2020). Performance analysis of jatropha oil-based polyurethane acrylate gel polymer electrolyte for dye-sensitized solar cells. ACS Omega, 5(24), 14267-14274. https://doi.org/10.1021/acsomega.9b04348
Saalah, S., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Biak, D. R. A., Basri, M., & Jusoh, E. R. (2015). Waterborne polyurethane dispersions synthesized from jatropha oil. Industrial Crops and Products, 64, 194-200. https://doi.org/10.1016/j.indcrop.2014.10.046
Saalah, S., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Biak, D. R. A., Basri, M., Jusoh, E. R., Mamat, S., & Al Edrus, S. S. O. (2021). Chemical and thermo-mechanical properties of waterborne polyurethane dispersion derived from jatropha oil. Polymers, 13(5), Article 795. https://doi.org/10.3390/polym13050795
Sammaiah, A., Padmaja, K. V., & Prasad, R. B. N. (2014). Synthesis of epoxy jatropha oil and its evaluation for lubricant properties. Journal of Oleo Science, 63(6), 637-643. https://doi.org/10.5650/jos.ess13172
Saurabh, T., Patnaik, M., Bhagst, S. L., & Renge, V. (2011). Epoxidation of vegetable oils: A review. International Journal of Advanced Engineering Technology E, 2(4), 491-501.
Sharmin, E., Zafar, F., Akram, D., Alam, M., & Ahmad, S. (2015). Recent advances in vegetable oils based environment friendly coatings: A review. Industrial Crops and Products, 76, 215-229. https://doi.org/10.1016/j.indcrop.2015.06.022
Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science and Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003
Somani, K. P., Kansara, S. S., Patel, N. K., & Rakshit, A. K. (2003). Castor oil based polyurethane adhesives for wood-to-wood bonding. International Journal of Adhesion and Adhesives, 23(4), 269-275. https://doi.org/10.1016/S0143-7496(03)00044-7
Su’Ait, M. S., Ahmad, A., Badri, K. H., Mohamed, N. S., Rahman, M. Y. A., Ricardo, C. L. A., & Scardi, P. (2014). The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy, 39(6), 3005-3017. https://doi.org/10.1016/j.ijhydene.2013.08.117
Tiwari, T., Kumar, M., Yadav, M., & Srivastava, N. (2019). Study of arrowroot starch-based polymer electrolytes and its application in MFC. Starch-Stärke, 71(7-8), Article 1800313. https://doi.org/10.1002/star.201800313
Unal, S., Oguz, C., Yilgor, E., Gallivan, M., Long, T. E., & Yilgor, I. (2005). Understanding the structure development in hyperbranched polymers prepared by oligomeric A2+B3approach: Comparison of experimental results and simulations. Polymer, 46(13), 4533-4543. https://doi.org/10.1016/j.polymer.2005.03.073
Wang, C. S., Yang, L. T., Ni, B. L., & Shi, G. (2009). Polyurethane networks from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, glycol, and 1,2-propanediol. Journal of Applied Polymer Science, 114(1), 125-131. https://doi.org/10.1002/app.30493
Wannatong, L., Sirivat, A., & Supaphol, P. (2004). Effects of solvents on electrospun polymeric fibers: Preliminary study on polystyrene. Polymer International, 53(11), 1851-1859. https://doi.org/10.1002/pi.1599
Wei, D., Liao, B., Yong, Q., Li, T., Wang, H., Huang, J., & Pang, H. (2018). Castor oil based hyperbranched urethane acrylates and their performance as UV-curable coatings. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 55(5), 422-432. https://doi.org/10.1080/10601325.2018.1453263
Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91-143. https://doi.org/10.1016/j.progpolymsci.2016.12.009
Zulkifli, A. M., Said, N. I. A. M., Aziz, S. B., Dannoun, E. M. A., Hisham, S., Shah, S., Bakar, A. A., Zainal, Z. H., Tajuddin, H. A., Hadi, J. M., Brza, M. A., Saeed, S. R., & Amin, P. O. (2020). Characteristics of dye-sensitized solar cell assembled from modified chitosan-based gel polymer electrolytes incorporated with potassium iodide. Molecules, 25(18), Article 4115. https://doi.org/10.3390/molecules2518411522 JST-3029-2021
ISSN 0128-7680
e-ISSN 2231-8526