e-ISSN 2231-8526
ISSN 0128-7680
Khairul Azman Ahmad, Noramalina Abdullah, Mohamad Faizal Abd Rahman, Muhammad Khusairi Osman and Rozan Boudville
Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022
DOI: https://doi.org/10.47836/pjst.30.1.33
Keywords: d33 mode polarization, flexible cantilever beam, interdigitated electrode circuit, polyvinylidene difluoride, vibration piezoelectric energy harvesting
Published on: 10 January 2022
Piezoelectric energy harvesting is the process of extracting electrical energy using energy harvester devices. Any stress in the piezoelectric material will generate induced voltage. Previous energy harvester device with stiff cantilever beam was generated low harvested energy. A flexural piezoelectric energy harvester is proposed to improve the generated harvesting energy. Polyvinylidene difluoride is a polymer piezoelectric material attached to a flexible circuit made of polyimide. Four interdigitated electrode circuits were designed and outsourced for fabrication. The polyvinylidene difluoride was then attached to the interdigitated electrode circuit, and a single clear adhesive tape was used to bind them. Four piezoelectric energy harvesters and ultrasonic ceramic generators were experimentally tested using a sieve shaker. The sieve shaker contains a two-speed oscillator, with M1=0.025 m/s and M2=0.05 m/s. It was used to oscillate the energy harvester devices. The resulting induced voltages were then measured. Design 4, with the widest width of electrode fingers and the widest gap between electrode fingers, had the highest power generated at an output load of 0.745 µW with the M2 oscillation speed. The oscillation speed of the sieve shaker impacted the energy harvester devices as a higher oscillation speed gave higher generated power.
Azmi, S., Varkiani, S. M. H., Latifi, M., & Bagherzadeh, R. (2020). Tuning energy harvesting devices with different layout angles to robust the mechanical-to-electrical energy conversion performance. Journal of Industrial Textiles. https://doi.org/10.1177/1528083720928822
Bafqi, M. S. S., Sadeghi, A. H., Latifi, M., & Bagherzadeh, R. (2021). Design and fabrication of a piezoelectric out-put evaluation system for sensitivity measurements of fibrous sensors and actuators. Journal of Industrial Textiles, 50(10), 1643-1659. https://doi.org/10.1177/1528083719867443
Baloda, S., Ansari, Z. A., Singh, S., & Gupta, N. (2020). Development and Analysis of graphene nanoplatelets (GNPs)-based flexible strain sensor for health monitoring applications. IEEE Sensors Journal, 20(22), 13302-13309. https://doi.org/10.1109/JSEN.2020.3004574
Bito, J., Bahr, R., Hester, J. G., Nauroze, S. A., Georgiadis, A., & Tentzeris, M. M. (2017). A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient internet-of-things wireless sensors. IEEE Transactions on Microwave Theory and Techniques, 65(5), 1831-1842. https://doi.org/10.1109/TMTT.2017.2660487
Çetin, H. G., & Sümer, B. (2015). A flexible piezoelectric energy harvesting system for broadband and low-frequency vibrations. Procedia Engineering, 120, 345-348. https://doi.org/10.1016/j.proeng.2015.08.631
Delnavaz, A., & Voix, J. (2014). Flexible piezoelectric energy harvesting from jaw movements. Smart Materials and Structures, 23(10), Article 105020. https://doi.org/10.1088/0964-1726/23/10/105020
Du, S., Jia, Y., Zhao, C., Amaratunga, G. A. J., & Seshia, A. A. (2020). A nail-size piezoelectric energy harvesting system integrating a MEMS transducer and a CMOS SSHI circuit. IEEE Sensors Journal, 20(1), 277-285. https://doi.org/10.1109/JSEN.2019.2941180
Fakhri, P., Amini, B., Bagherzadeh, R., Kashfi, M., Latifi, M., Yavari, N., Kani, S. A., & Kong, L. (2019). Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output. RSC Advances, 9(18), 10117-10123. https://doi.org/10.1039/C8RA10315A
Fan, D., Ruiz, L. L., Gong, J., & Lach, J. (2018). EHDC: An energy harvesting modeling and profiling platform for body sensor networks. IEEE Journal of Biomedical and Health Informatics, 22(1), 33-39. https://doi.org/10.1109/JBHI.2017.2733549
Fu, J., Hou, Y., Zheng, M., & Zhu, M. (2020). Flexible piezoelectric energy harvester with extremely high power generation capability by sandwich structure design strategy. ACS Applied Materials & Interfaces, 12(8), 9766-9774. https://doi.org/10.1021/acsami.9b21201
Gao, S., Zhang, G., Jin, L., Li, P., & Liu, H. (2017). Study on characteristics of the piezoelectric energy-harvesting from the torsional vibration of thin-walled cantilever beams. Microsystem Technologies, 23(12), 5455-5465. https://doi.org/10.1007/s00542-017-3336-6
Hao, G., Dong, X., Li, Z., & Liu, X. (2020). Dynamic response of PVDF cantilever due to droplet impact using an electromechanical model. Sensors, 20(20), Article 5764. https://doi.org/10.3390/s20205764
Huang, H. H., & Chen, K. S. (2016). Design, analysis, and experimental studies of a novel PVDF-based piezoelectric energy harvester with beating mechanisms. Sensors and Actuators A: Physical, 238, 317-328. https://doi.org/10.1016/j.sna.2015.11.036
Jasim, A., Yesner, G., Wang, H., Safari, A., Maher, A., & Basily, B. (2018). Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications. Applied Energy, 224, 438-447. https://doi.org/10.1016/j.apenergy.2018.05.040
Kuang, Y., & Zhu, M. (2017). Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling. Sensors and Actuators A: Physical, 263, 510-520. https://doi.org/10.1016/j.sna.2017.07.009
Li, H., Tian, C., & Deng, Z. D. (2014). Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews, 1(4), Article 041301. https://doi.org/10.1063/1.4900845
Luo, W., Sharma, V., & Young, D. J. (2020). A paper-based flexible tactile sensor array for low-cost wearable human health monitoring. Journal of Microelectromechanical Systems, 29(5), 825-831. https://doi.org/10.1109/JMEMS.2020.3011498
Motter, D., Lavarda, J. V., Dias, F. A., & da Silva, S. (2012). Vibration energy harvesting using piezoelectric transducer and non-controlled rectifiers circuits. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 378-385. https://doi.org/10.1590/S1678-58782012000500006
Qian, F., Xu, T. B., & Zuo, L. (2018). Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Conversion and Management, 171, 1352-1364. https://doi.org/10.1016/j.enconman.2018.06.069
Shen, Z., Lu, J., Tan, C. W., Miao, J., & Wang, Z. (2013). D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity. Sensors and Actuators A: Physical, 189, 93-99. https://doi.org/10.1016/j.sna.2012.09.028
Šolić, P., Leoni, A., Colella, R., Perković, T., Catarinucci, L., & Stornelli, V. (2021). IoT-Ready energy-autonomous parking sensor device. IEEE Internet of Things Journal, 8(6), 4830-4840. https://doi.org/10.1109/JIOT.2020.3031088
Tsukamoto, T., Umino, Y., Shiomi, S., Yamada, K., & Suzuki, T. (2018). Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration. Science and Technology of Advanced Materials, 19(1), 660-668. https://doi.org/10.1080/14686996.2018.1508985
Yesner, G., Jasim, A., Wang, H., Basily, B., Maher, A., & Safari, A. (2019). Energy harvesting and evaluation of a novel piezoelectric bridge transducer. Sensors and Actuators A: Physical, 285, 348-354. https://doi.org/10.1016/j.sna.2018.11.013
ISSN 0128-7680
e-ISSN 2231-8526