PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 30 (1) Jan. 2022 / JST-2704-2021

 

Esterification of Free Fatty Acid in Palm Oil Mill Effluent using Sulfated Carbon-Zeolite Composite Catalyst

Hasanudin Hasanudin, Qodria Utami Putri, Tuty Emilia Agustina and Fitri Hadiah

Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022

DOI: https://doi.org/10.47836/pjst.30.1.21

Keywords: Biodiesel, esterification, palm oil mill effluent, sulfonated carbon

Published on: 10 January 2022

Free fatty acid esterification (FFA) in palm oil mill waste (POME) was carried out using a sulfonated carbon-zeolite composite catalyst. The catalyst is synthesized with carbon precursor obtained from molasses, which is adsorbed on the surface of the zeolite and then carbonized and sulfonated with concentrated H2SO4 to form a sulfonated carbon-zeolite catalyst composite, which will be used for the esterification catalyst and the optimization process for the esterification reaction is carried out using the response surface methodology (RSM) and experimental central composite design (CCD). Importantly, the observed independent variables were temperature, catalyst weight, and reaction time to produce fatty acid methyl ester (FAME) products. The catalyst was successfully synthesized, which was shown from the SEM characterization strengthened by the presence of a sulfate group in the FTIR results and the calculation results of high acidity properties. Optimization of FFA esterification with SCZ catalyst obtained optimal conditions with a temperature of 79oC, a catalyst weight of 3.00 g, and a reaction time of 134 minutes with a FAME product of 93.75%, considering that the viscosity of biodiesel is below that required by the API.

  • Aboelazayem, O., Gadalla, M., & Saha, B. (2019). Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil. Renewable Energy, 143, 77-90. https://doi.org/10.1016/j.renene.2019.04.106.

  • Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763-4784. https://doi.org/10.1016/j.rser.2012.04.010

  • Celdeira, P. A., Gonçalves, M., Figueiredo, F. C. A., Bosco, S. M. D., Mandelli, D., & Carvalho, W. A. (2014). Sulfonated niobia and pillared clay as catalysts in etherification reaction of glycerol. Applied Catalysis A: General, 478, 98-106. https://doi.org/10.1016/j.apcata.2014.03.037

  • Cheng, J., Zhang, Z., Zhang, X., Liu, J., Zhou, J., & Cen, K. (2019). Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons. International Journal of Hydrogen Energy, 44(3), 1650-1658. https://doi.org/10.1016/j.ijhydene.2018.11.110

  • de Jesus, A. A., de Santana Souza, D. F., de Oliveira, J. A., de Deus, M. S., da Silva, M. G., Franceschi, E., da Silva Egues, S. M., & Dariva, C. (2018). Mathematical modeling and experimental esterification at supercritical conditions for biodiesel production in a tubular reactor. Energy Conversion and Management, 171(April), 1697-1703. https://doi.org/10.1016/j.enconman.2018.06.108

  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968

  • Di Pietro, M. E., Mannu, A., & Mele, A. (2020). NMR determination of free fatty acids in vegetable oils. Processes, 8(4), Article 410. https://doi.org/10.3390/pr8040410

  • Effiyanti, L., Susanto., Hikmah, N., Indrawan, D. A., & Pari, G. (2019). Characterization and potential of wood waste sulfonated activated carbon catalyst based on rice husk hydrolysis reaction using microwave. Journal of Research Result Forest, 37(2), 67-80.

  • Encinar, J. M., Sánchez, N., Martínez, G., & García, L. (2011). Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology, 102(23), 10907-10914. https://doi.org/10.1016/j.biortech.2011.09.068

  • Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181(December 2018), 562-570. https://doi.org/10.1016/j.enconman.2018.12.033.

  • Gafar, A. (2012). Síntesis and biodiesel quality test from palm oil plant liquid waste transesterification process. Journal of Chemical Progress science, 2(1), 11-20.

  • Gebremariam, S. N., & Marchetti, J. M. (2018a). Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversion and Management, 174(August), 639-648. https://doi.org/10.1016/j.enconman.2018.08.078

  • Gebremariam, S. N., & Marchetti, J. M. (2018b). Economics of biodiesel production: Review. Energy Conversion and Management, 168(February), 74-84. https://doi.org/10.1016/j.enconman.2018.05.002

  • Hasanudin., Said, M., Faizal, M., Dahlan, M. H., & Wijaya, K. (2012). Hydrocracking of oil residue from palm oil mill effluent to biofuel. Sustainable Enviroment Research, 22(6), 395-400.

  • Hasan, Z., Yoon, J. W., & Jhung, S. H. (2015). Esterification and acetylation reactions over in situ synthesized mesoporous sulfonated silica. Chemical Engineering Journal, 278, 105-112. https://doi.org/10.1016/j.cej.2014.12.025

  • Irawati., Kurniawan, C., & Harjono. (2019). Optimization of epoxidation fatty acid methyl esters (FAME) Based on palm olein as a cat filter additive. Indonesian Journal of Chemical Science, 8(1), 34-40.

  • Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2(2017), 69-76. https://doi.org/10.1016/j.biteb.2018.04.007

  • Lakhya, J. K., Boro, J., & Deka, D. (2014). Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews, 29, 546-564. https://doi.org/10.1016/j.rser.2013.09.003

  • Li, J., Fu, Y. J., Qu, X. J., Wang, W., Luo, M., Zhao, C. J., & Zu, Y. G. (2012). Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresource Technology, 108,112-118. https://doi.org/10.1016/j.biortech.2011.12.129

  • Liu, X. Y., Huang, M., Ma, H. L., Zhang, Z. Q., Gao, J. M., Zhu, Y. L., Han, X. J., & Guo, X. Y. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188-7196. https://doi.org/10.3390/molecules15107188

  • Luo, Y., Mei, Z., Liu, N., Wang, H., Han, C., & He, S. (2017). Synthesis of mesoporous sulfated zirconia nanoparticles with high surface area and their applies for biodiesel production as effective catalysts. Catalysis Today, 298(November 2016), 99-108. https://doi.org/10.1016/j.cattod.2017.05.047

  • Ma, L., Han, Y., Sun, K., Lu, J., & Ding, J. (2015). Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy Conversion and Management, 98, 46-53. https://doi.org/10.1016/j.enconman.2015.03.092

  • Maneechakr, P., Samerjit, J., Uppakarnrod, S., & Karnjanakom, S. (2020). Retraction notice to “Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin”[Journal of Industrial and Engineering Chemistry 32 (2015) 128 - 136]. Journal of Industrial and Engineering Chemistry, 87, 264-264. https://doi.org/10.1016/j.jiec.2020.03.031.

  • Mar, W. W., & Samsook, E. (2012). Sulfonic-functionalized carbon catalyst for esterification of high free fatty acid. Procedia Engineering, 32, 212-218. https://doi.org/10.1016/j.proeng.2012.01.1259

  • Marchetti, J. M., & Errazu, A. F. (2008). Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel, 87(15-16), 3477-3480. https://doi.org/10.1016/j.fuel.2008.05.011

  • Marchetti, J. M., Miguel, V. U., & Errazu, A. F. (2008). Techno-economic study of different alternatives for biodiesel production. Fuel Processing Technology, 89(8), 740-748. https://doi.org/10.1016/j.fuproc.2008.01.007

  • Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., & Pang, Y. L. (2017). Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conversion and Management, 144, 10-17. https://doi.org/10.1016/j.enconman.2017.04.038

  • Meçabih, Z. (2016). Characterization of pillared clay by SEM-EDX. Journal of Multidisciplinary Engineering Science and Technology, 3(6), 5107-5109.

  • Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: Current status and future challenges. Green Chemistry, 11(9), 1285-1308. https://doi.org/10.1039/b902086a

  • Nata, I. F., Putra, M. D., Irawan, C., & Lee, C. K. (2017). Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. Journal of Environmental Chemical Engineering, 5(3), 2171-2175. https://doi.org/10.1016/j.jece.2017.04.029.

  • Ngawosuan, K., Jr Goodwin, J. G., & Prasertdha, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262-269. https://doi.org/10.1016/j.renene.2015.08.010

  • Ofoefule, A. U., Esonye, C., Onukwuli, O. D., Nwaeze, E., & Ume, C. S. (2019). Modeling and optimization of African pear seed oil esterification and transesterification using artificial neural network and response surface methodology comparative analysis. Industrial Crops and Products, 140, Article 111707. https://doi.org/10.1016/j.indcrop.2019.111707

  • Ravindra, R. T., Kaneko, S., Endo, T., & Lakhsmi, R. S. (2013). Spectroscopic characterization of bentonit. Journal of Laser, Optics & Photonics, 4(3), 1-4.

  • Sangar, S. K., Lan, C. S., Razali, S. M., Farabi, M. S. A., & Taufiq-Yap, Y. H. (2019). Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst. Energy Conversion and Management, 196, 1306-1315. https://doi.org/10.1016/j.enconman.2019.06.073

  • Suminta, S., & Las, T. (2018). Smoothing of mordenite crystal cage structure and natural klinoptilolite by rietveld method. Indonesian Journal of Material Science, 7(2), 73-78. https://doi.org/10.17146/jsmi.2006.7.2.5004S

  • Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92, 336-341. https://doi.org/10.1016/j.fuproc.2010.09.025

  • Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Marrocchi, A., & Vaccaro, L. (2018). Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Progress in Energy and Combustion Science, 65, 136-162. https://doi.org/10.1016/j.pecs.2017.11.001

  • Vargas, E. M., Neves, M. C., Tarelho, L. A. C., & Nunes, M. I. (2019). Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renewable Energy, 136, 873-883. https://doi.org/10.1016/j.renene.2019.01.048

  • William., Sanjaya, J., Taslim., Herawan, T., & Rivani, M. (2016). Optimization of biodiesel manufacturing process from distillate palm fatty acids (ALSD) and dimethyl carbonate (DMC) using Novozymes 435 catalyst. Journal Chemical Enggeenering USU, 5(1), 13-19. https://doi.org/10.32734/jtk.v5i1.1519

  • Wilson, K., & Lee, A. F. (2012). Rational design of heterogeneous catalysts for biodiesel synthesis. Catalysis Science and Technology, 2(5), 884-897. https://doi.org/10.1039/c2cy20038d

  • Xu, B., Ren, J., Liu, X., Guo, Y., Gou, Y., Lu, G., & Wang, Y. (2010). Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communication, 11, 629-632. https://doi.org/10.1016/j.catcom.2010.01.010

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2704-2021

Download Full Article PDF

Share this article

Recent Articles