e-ISSN 2231-8526
ISSN 0128-7680
Hasanudin Hasanudin, Qodria Utami Putri, Tuty Emilia Agustina and Fitri Hadiah
Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022
DOI: https://doi.org/10.47836/pjst.30.1.21
Keywords: Biodiesel, esterification, palm oil mill effluent, sulfonated carbon
Published on: 10 January 2022
Free fatty acid esterification (FFA) in palm oil mill waste (POME) was carried out using a sulfonated carbon-zeolite composite catalyst. The catalyst is synthesized with carbon precursor obtained from molasses, which is adsorbed on the surface of the zeolite and then carbonized and sulfonated with concentrated H2SO4 to form a sulfonated carbon-zeolite catalyst composite, which will be used for the esterification catalyst and the optimization process for the esterification reaction is carried out using the response surface methodology (RSM) and experimental central composite design (CCD). Importantly, the observed independent variables were temperature, catalyst weight, and reaction time to produce fatty acid methyl ester (FAME) products. The catalyst was successfully synthesized, which was shown from the SEM characterization strengthened by the presence of a sulfate group in the FTIR results and the calculation results of high acidity properties. Optimization of FFA esterification with SCZ catalyst obtained optimal conditions with a temperature of 79oC, a catalyst weight of 3.00 g, and a reaction time of 134 minutes with a FAME product of 93.75%, considering that the viscosity of biodiesel is below that required by the API.
Aboelazayem, O., Gadalla, M., & Saha, B. (2019). Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil. Renewable Energy, 143, 77-90. https://doi.org/10.1016/j.renene.2019.04.106.
Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763-4784. https://doi.org/10.1016/j.rser.2012.04.010
Celdeira, P. A., Gonçalves, M., Figueiredo, F. C. A., Bosco, S. M. D., Mandelli, D., & Carvalho, W. A. (2014). Sulfonated niobia and pillared clay as catalysts in etherification reaction of glycerol. Applied Catalysis A: General, 478, 98-106. https://doi.org/10.1016/j.apcata.2014.03.037
Cheng, J., Zhang, Z., Zhang, X., Liu, J., Zhou, J., & Cen, K. (2019). Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons. International Journal of Hydrogen Energy, 44(3), 1650-1658. https://doi.org/10.1016/j.ijhydene.2018.11.110
de Jesus, A. A., de Santana Souza, D. F., de Oliveira, J. A., de Deus, M. S., da Silva, M. G., Franceschi, E., da Silva Egues, S. M., & Dariva, C. (2018). Mathematical modeling and experimental esterification at supercritical conditions for biodiesel production in a tubular reactor. Energy Conversion and Management, 171(April), 1697-1703. https://doi.org/10.1016/j.enconman.2018.06.108
Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968
Di Pietro, M. E., Mannu, A., & Mele, A. (2020). NMR determination of free fatty acids in vegetable oils. Processes, 8(4), Article 410. https://doi.org/10.3390/pr8040410
Effiyanti, L., Susanto., Hikmah, N., Indrawan, D. A., & Pari, G. (2019). Characterization and potential of wood waste sulfonated activated carbon catalyst based on rice husk hydrolysis reaction using microwave. Journal of Research Result Forest, 37(2), 67-80.
Encinar, J. M., Sánchez, N., Martínez, G., & García, L. (2011). Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology, 102(23), 10907-10914. https://doi.org/10.1016/j.biortech.2011.09.068
Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181(December 2018), 562-570. https://doi.org/10.1016/j.enconman.2018.12.033.
Gafar, A. (2012). Síntesis and biodiesel quality test from palm oil plant liquid waste transesterification process. Journal of Chemical Progress science, 2(1), 11-20.
Gebremariam, S. N., & Marchetti, J. M. (2018a). Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversion and Management, 174(August), 639-648. https://doi.org/10.1016/j.enconman.2018.08.078
Gebremariam, S. N., & Marchetti, J. M. (2018b). Economics of biodiesel production: Review. Energy Conversion and Management, 168(February), 74-84. https://doi.org/10.1016/j.enconman.2018.05.002
Hasanudin., Said, M., Faizal, M., Dahlan, M. H., & Wijaya, K. (2012). Hydrocracking of oil residue from palm oil mill effluent to biofuel. Sustainable Enviroment Research, 22(6), 395-400.
Hasan, Z., Yoon, J. W., & Jhung, S. H. (2015). Esterification and acetylation reactions over in situ synthesized mesoporous sulfonated silica. Chemical Engineering Journal, 278, 105-112. https://doi.org/10.1016/j.cej.2014.12.025
Irawati., Kurniawan, C., & Harjono. (2019). Optimization of epoxidation fatty acid methyl esters (FAME) Based on palm olein as a cat filter additive. Indonesian Journal of Chemical Science, 8(1), 34-40.
Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2(2017), 69-76. https://doi.org/10.1016/j.biteb.2018.04.007
Lakhya, J. K., Boro, J., & Deka, D. (2014). Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews, 29, 546-564. https://doi.org/10.1016/j.rser.2013.09.003
Li, J., Fu, Y. J., Qu, X. J., Wang, W., Luo, M., Zhao, C. J., & Zu, Y. G. (2012). Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresource Technology, 108,112-118. https://doi.org/10.1016/j.biortech.2011.12.129
Liu, X. Y., Huang, M., Ma, H. L., Zhang, Z. Q., Gao, J. M., Zhu, Y. L., Han, X. J., & Guo, X. Y. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188-7196. https://doi.org/10.3390/molecules15107188
Luo, Y., Mei, Z., Liu, N., Wang, H., Han, C., & He, S. (2017). Synthesis of mesoporous sulfated zirconia nanoparticles with high surface area and their applies for biodiesel production as effective catalysts. Catalysis Today, 298(November 2016), 99-108. https://doi.org/10.1016/j.cattod.2017.05.047
Ma, L., Han, Y., Sun, K., Lu, J., & Ding, J. (2015). Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy Conversion and Management, 98, 46-53. https://doi.org/10.1016/j.enconman.2015.03.092
Maneechakr, P., Samerjit, J., Uppakarnrod, S., & Karnjanakom, S. (2020). Retraction notice to “Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin”[Journal of Industrial and Engineering Chemistry 32 (2015) 128 - 136]. Journal of Industrial and Engineering Chemistry, 87, 264-264. https://doi.org/10.1016/j.jiec.2020.03.031.
Mar, W. W., & Samsook, E. (2012). Sulfonic-functionalized carbon catalyst for esterification of high free fatty acid. Procedia Engineering, 32, 212-218. https://doi.org/10.1016/j.proeng.2012.01.1259
Marchetti, J. M., & Errazu, A. F. (2008). Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel, 87(15-16), 3477-3480. https://doi.org/10.1016/j.fuel.2008.05.011
Marchetti, J. M., Miguel, V. U., & Errazu, A. F. (2008). Techno-economic study of different alternatives for biodiesel production. Fuel Processing Technology, 89(8), 740-748. https://doi.org/10.1016/j.fuproc.2008.01.007
Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., & Pang, Y. L. (2017). Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conversion and Management, 144, 10-17. https://doi.org/10.1016/j.enconman.2017.04.038
Meçabih, Z. (2016). Characterization of pillared clay by SEM-EDX. Journal of Multidisciplinary Engineering Science and Technology, 3(6), 5107-5109.
Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: Current status and future challenges. Green Chemistry, 11(9), 1285-1308. https://doi.org/10.1039/b902086a
Nata, I. F., Putra, M. D., Irawan, C., & Lee, C. K. (2017). Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. Journal of Environmental Chemical Engineering, 5(3), 2171-2175. https://doi.org/10.1016/j.jece.2017.04.029.
Ngawosuan, K., Jr Goodwin, J. G., & Prasertdha, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262-269. https://doi.org/10.1016/j.renene.2015.08.010
Ofoefule, A. U., Esonye, C., Onukwuli, O. D., Nwaeze, E., & Ume, C. S. (2019). Modeling and optimization of African pear seed oil esterification and transesterification using artificial neural network and response surface methodology comparative analysis. Industrial Crops and Products, 140, Article 111707. https://doi.org/10.1016/j.indcrop.2019.111707
Ravindra, R. T., Kaneko, S., Endo, T., & Lakhsmi, R. S. (2013). Spectroscopic characterization of bentonit. Journal of Laser, Optics & Photonics, 4(3), 1-4.
Sangar, S. K., Lan, C. S., Razali, S. M., Farabi, M. S. A., & Taufiq-Yap, Y. H. (2019). Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst. Energy Conversion and Management, 196, 1306-1315. https://doi.org/10.1016/j.enconman.2019.06.073
Suminta, S., & Las, T. (2018). Smoothing of mordenite crystal cage structure and natural klinoptilolite by rietveld method. Indonesian Journal of Material Science, 7(2), 73-78. https://doi.org/10.17146/jsmi.2006.7.2.5004S
Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92, 336-341. https://doi.org/10.1016/j.fuproc.2010.09.025
Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Marrocchi, A., & Vaccaro, L. (2018). Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Progress in Energy and Combustion Science, 65, 136-162. https://doi.org/10.1016/j.pecs.2017.11.001
Vargas, E. M., Neves, M. C., Tarelho, L. A. C., & Nunes, M. I. (2019). Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renewable Energy, 136, 873-883. https://doi.org/10.1016/j.renene.2019.01.048
William., Sanjaya, J., Taslim., Herawan, T., & Rivani, M. (2016). Optimization of biodiesel manufacturing process from distillate palm fatty acids (ALSD) and dimethyl carbonate (DMC) using Novozymes 435 catalyst. Journal Chemical Enggeenering USU, 5(1), 13-19. https://doi.org/10.32734/jtk.v5i1.1519
Wilson, K., & Lee, A. F. (2012). Rational design of heterogeneous catalysts for biodiesel synthesis. Catalysis Science and Technology, 2(5), 884-897. https://doi.org/10.1039/c2cy20038d
Xu, B., Ren, J., Liu, X., Guo, Y., Gou, Y., Lu, G., & Wang, Y. (2010). Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communication, 11, 629-632. https://doi.org/10.1016/j.catcom.2010.01.010
ISSN 0128-7680
e-ISSN 2231-8526