e-ISSN 2231-8526
ISSN 0128-7680
Zahid Iqbal Khan, Zurina Mohamad, Abdul Razak Rahmat and Unsia Habib
Pertanika Journal of Science & Technology, Volume 29, Issue 3, July 2021
DOI: https://doi.org/10.47836/pjst.29.3.15
Keywords: Aerospace and unmanned aerial vehicle, carbon fibres, composite materials, thermo-mechanical, vacuum bag technique
Published on: 31 July 2021
Lightweight and high strength composite materials are vital for unmanned aerial vehicles (UAVs) and aerospace technologies with desired characteristics. Carbon composite materials exhibit extraordinary properties for UAVs and aerospace applications. This study aimed to discover the best-prepared composition of composites material having epoxy LY-5052 and carbon fibres laminate for UAVs. Besides, to develop a low cost with high specific strength composite material for aerospace application to replace metallic alloys. In this work, the vacuum bag technique is used to prepare rectangular strips of three different ratios of carbon fibre/epoxy laminates [(40:60), (50:50) and (60:40)] to obtain the best composite in terms of properties. The thermo-mechanical and viscoelastic behaviour of composite materials were evaluated using differential scanning calorimetry (DSC), universal testing machine (UTM) and dynamic mechanical analysis (DMA). The tensile strength of epoxy LY5052 composites with 60 wt% has enhanced to 986%, and glass transition temperature (Tg) was improved from 71oC to 110oC. Overall, 60 wt% carbon fibre exhibits better thermo-mechanical properties with lightweight, which may be a future composite material for aerospace, especially UAVs technologies.
Afshar, A., Mihut, D., & Chen, P. (2020). Effects of environmental exposures on carbon fiber epoxy composites protected by metallic thin films. Journal of Composite Materials, 54(2), 167-177. https://doi.org/10.1177/0021998319859051
Ashori, A., Ghiyasi, M., & Fallah, A. (2019). Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: Enhancement of interlaminar fracture toughness and thermo-mechanical performance. Polymer Bulletin, 76(1), 259-270. https://doi.org/10.1007/s00289-018-2387-x
Backes, E. H., Passador, F. R., Leopold, C., Fiedler, B., & Pessan, L. A. (2018). Electrical, thermal and thermo-mechanical properties of epoxy/multi-wall carbon nanotubes/mineral fillers nanocomposites. Journal of Composite Materials, 52(23), 3209-3217. https://doi.org/10.1177/0021998318763497
Barkoula, N. M., Peijs, T., Schimanski, T., & Loos, J. (2005). Processing of single polymer composites using the concept of constrained fibers. Polymer Composites, 26(1), 114-120. https://doi.org/10.1002/pc.20082
Batabyal, A., Nayak, R. K., & Tripathy, S. (2018). Evaluation of mechanical properties of glass fibre and carbon fibre reinforced polymer composite. Journal of Communication Engineering & Systems, 8(2), 2321-5151.
Cai, D., Zhou, G., & Silberschmidt, V. V. (2016). Effect of through-thickness compression on in-plane tensile strength of glass/epoxy composites: Experimental study. Polymer Testing, 49, 1-7. https://doi.org/10.1016/j.polymertesting.2015.10.015
Dong, S., & Gauvin, R. (1993). Application of dynamic mechanical analysis for the study of the interfacial region in carbon fiber/epoxy composite materials. Polymer Composites, 14(5), 414-420. https://doi.org/10.1002/pc.750140508
Ekşi, S., & Genel, K. (2017). Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites. Acta Physica Polonica A, 132(3), 879-882. https://doi.org/10.12693/APhysPolA.132.879
Giones, F., & Brem, A. (2017). From toys to tools: The co-evolution of technological and entrepreneurial developments in the drone industry. Business Horizons, 60(6), 875-884. https://doi.org/10.1016/j.bushor.2017.08.001
Hassan, M. A. (2012). Physicaland thermal properties of fiber ( S-TYPE ) - Reinforced compositearaldite resin ( GY 260 ). Al-Qadisiya Journal For Engineering Sciences, 5(4), 341-346.
Kaleemulla, K. M., & Siddeswarappa, B. (2010). Influence of fiber orientation on the in-plane mechanical properties of laminated hybrid polymer composites. Journal of Reinforced Plastics and Composites, 29(12), 1900-1914. https://doi.org/10.1177/0731684409340806
Kaybal, H. B., Unuvar, A., Kaynak, Y., & Avcı, A. (2020). Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materials. Journal of Composite Materials, 54(2), 215-227. https://doi.org/10.1177/0021998319860245
Khan, Z. I., Arsad, A., Mohamad, Z., Habib, U., & Zaini, M. A. A. (2020). Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Materials Today: Proceedings, 39, 956-958. https://doi.org/10.1016/j.matpr.2020.04.223
Lee, J., Ni, X., Daso, F., Xiao, X., King, D., Gomez, J. s., Varela, T. B., Kessler, S. S., & Wardle, B. L. (2018). Advanced carbon fiber composite out-of-autoclave laminate manufacture via nanostructured out-of-oven conductive curing. Composites Science and Technology, 166, 150-159. https://doi.org/10.1016/j.compscitech.2018.02.031
Minty, R. F., Yang, L., & Thomason, J. L. (2018). The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 112, 64-70. https://doi.org/10.1016/j.compositesa.2018.05.033
Muralidhara, B., Babu, S. P. K., & Suresha, B. (2020). Studies on dynamic mechanical and thermal properties of boron carbide filled carbon fiber/epoxy composites. Materials Today: Proceedings, 1-5. https://doi.org/10.1016/j.matpr.2019.12.204
Ornaghi, H. L., Bolner, A. S., Fiorio, R., Zattera, A. J., & Amico, S. C. (2010). Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. Journal of Applied Polymer Science, 118(2), 887-896. https://doi.org/10.1002/app.32388
Rahmani, H., Najafi, S. H. M., Saffarzadeh-Matin, S., & Ashori, A. (2014). Mechanical properties of carbon fiber/epoxy composites: Effects of number of plies, fiber contents, and angle-ply Layers. Polymer Engineering and Science, 54(11), 2676-2682. https://doi.org/10.1002/pen.23820
Ramirez-Atencia, C., Rodriguez-Fernandez, V., & Camacho, D. (2020). A revision on multi-criteria decision making methods for multi-UAV mission planning support. Expert Systems with Applications, 160, Article 113708. https://doi.org/10.1016/j.eswa.2020.113708
Reddy, C. V., Raju, C. J. S., Babu, P. R., & Ramnarayanan, R. (2019). Effect of benzoxazine on epoxy based carbon fabric reinforced composites for high strength applications. In Proceedings of International Conference on Intelligent Manufacturing and Automation (pp. 353-367). Springer. https://doi.org/10.1007/978-981-13-2490-1_32
Ridzuan, A., & Jagan, T. (2019). Design and analysis of carbon fibre composite monorack arm for motorcycle. International Journal of Integrated Engineering, 11(7), 152-161. https://doi.org/10.30880/ijie.2019.11.07.020
Schlothauer, A., Fasel, U., Keidel, D., & Ermanni, P. (2020). High load carrying structures made from folded composite materials. Composite Structures, 250(June), Article 112612. https://doi.org/10.1016/j.compstruct.2020.112612
Shokrieh, M. M., Daneshvar, A., Akbari, S., & Chitsazzadeh, M. (2013). The use of carbon nanofibers for thermal residual stress reduction in carbon fiber/epoxy laminated composites. Carbon, 59, 255-263. https://doi.org/10.1016/j.carbon.2013.03.016
Turla, P., Kumar, S. S., Reddy, P. H., & Shekar, K. C. (2014). Processing and flexural strength of carbon fiber and glass fiber reinforced epoxy-matrix hybrid composite. Bulletin of Materials Science, 37(3), 597-602.
Vasudevan, A., Kumaran, S. S., Naresh, K., & Velmurugan, R. (2018). Experimental and analytical investigation of thermo-mechanical responses of pure epoxy and carbon/Kevlar/S-glass/E-glass/epoxy interply hybrid laminated composites for aerospace applications. International Journal of Polymer Analysis and Characterization, 23(7), 591-605. https://doi.org/10.1080/1023666X.2018.1468599
ISSN 0128-7680
e-ISSN 2231-8526