PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 29 (2) Apr. 2021 / JST-2305-2020

 

Ethylene Yield from a Large Scale Naphtha Pyrolysis Cracking Utilizing Response Surface Methodology

Mohamad Hafizi Zakria, Mohd Ghazali Mohd Nawawi1 and Mohd Rizal Abdul Rahman

Pertanika Journal of Science & Technology, Volume 29, Issue 2, April 2021

DOI: https://doi.org/10.47836/pjst.29.2.06

Keywords: Ethylene yield, naphtha cracking, olefin plant, pyrolysis cracking, response surface methodology, statistical analysis

Published on: 30 April 2021

Statistical software is a robust application that has proven reliable worldwide. However, it is not normally used in the actual large scale olefin plant as it relies on the simulation software by Olefin Licensor should any issue rises. The study was conducted in a newly commissioned large scale olefin plant to see the impact of various operating variables on the ethylene yield from Short Residence Time (SRT) VII Furnace. The analysis was conducted utilizing statistical analysis, Response Surface Methodology (RSM) in Minitab Software Version 18 to develop a reliable statistical model with a 95% confidence level. The historical data was taken from the Process Information Management System (PIMS) Software, PI Process Book Version 2015, and underwent both residuals and outliers removal prior to RSM analysis. 10 variables were shortlisted from the initial 15 identified variables in the studied SRT VII via Regression analysis due to RSM limitation to conduct the larger analysis in Minitab Software Version 18. The Response Optimizer tool showed that the ethylene yield from naphtha pyrolysis cracking in the studied plant could be maximized at 34.1% with control setting at 600.39 kg/ hr of Integral Burner Flow, 6.81% of Arch O2, 113.42 Barg of Steam Drum Pressure, 496.96°C of Super High Pressure (SHP) Temperature, 109.11 t/hr of SHP Boiler Feed Water (BFW) Flow, 92.78 t/hr of SHP Flow, 63.50 t/hr of Naphtha Feed Flow, and -13.38 mmHg of Draft Pressure.

  • Akah, A., & Al-Ghrami, M. (2015). Maximizing propylene production via FCC technology. Applied Petrochemical Research, 5(4), 377-392. https: //doi.org/10.1007/s13203-015-0104-3

  • Akporiaye, D., Jensen, S., Olsbye, U., Rohr, F., Rytter, E., Rønnekleiv, M., & Spjelkavik, A. I. (2001). A Novel, Highly Efficient Catalyst for Propane Dehydrogenation. Industrial & Engineering Chemistry Research, 40(22), 4741-4748. https: //doi.org/10.1021/ie010299+

  • Amirov, N., & Vakhshouri, A. R. (2020). Numerical modeling and optimization of product selectivity and catalyst activity in Fischer-Tropsch synthesis via response surface methodology: Cobalt carbide particle size and H2/CO ratio effects. International Journal of Hydrogen Energy, 45(56), 31913-31925. https: //doi.org/10.1016/j.ijhydene.2020.08.219

  • Astruc, D. (2005). The Metathesis Reactions: From a Historical Perspective to Recent Developments. New Journal of Chemistry, 29(1), 42-56. https: //doi.org/10.1039/b412198h

  • Belinskaya, N., Altynov, A., Bogdanov, I., Popok, E., Kirgina, M., & Simakov, D. S. A. (2019). Production of Gasoline Using Stable Gas Condensate and Zeoforming Process Products as Blending Components. Energy & Fuels, 33(5), 4202-4210. https: //doi.org/10.1021/acs.energyfuels.9b00591

  • Berreni, M., & Wang, M. (2011). Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing. Computers & Chemical Engineering, 35(12), 2876-2885. https: //doi.org/10.1016/j.compchemeng.2011.05.010

  • Caballero, D. Y., Biegler, L. T., & Guirardello, R. (2015). Simulation and optimization of the ethane cracking process to produce ethylene. Computer Aided Chemical Engineering, 37, 917-922. https: //doi.org/10.1016/B978-0-444-63578-5.50148-1

  • Cai, Y., Yang, S., Fu, S., Zhang, D., & Zhang, Q. (2017). Investigation of portevin–Le chatelier band strain and elastic shrinkage in al-based alloys associated with Mg contents. Journal of Materials Science & Technology, 33(6), 580-586. https: //doi.org/10.1016/j.jmst.2016.05.012

  • Darvishi, A., Davand, R., Khorasheh, F., & Fattahi, M. (2016). Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane. Chinese Journal of Chemical Engineering, 24(5), 612-622. https: //doi.org/10.1016/j.cjche.2015.12.018

  • Dente, M., Ranzi, E., & Goossens, A. G. (1979). Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO). Computers & Chemical Engineering, 3(1), 61-75. https: //doi.org/10.1016/0098-1354(79)80013-7

  • Epstein, L. G. (1978). The Le Chatelier Principle in optimal control problems. Journal of Economic Theory, 19(1), 103-122. https: //doi.org/10.1016/0022-0531(78)90058-3

  • Fakhroleslam, M., & Sadrameli, S. M. (2019). Thermal/catalytic cracking of hydrocarbons for the production of olefins; a state-of-the-art review III: Process modeling and simulation. Fuel, 252, 553-566. https: //doi.org/10.1016/j.fuel.2019.04.127

  • Fakhroleslam, M., & Sadrameli, S. M. (2020). Thermal cracking of hydrocarbons for the production of light olefins: A review on optimal process design, operation, and control. Industrial & Engineering Chemistry Research, 59(27), 12288-12303. https: //doi.org/10.1021/acs.iecr.0c00923

  • Feli, Z., Darvishi, A., Bakhtyari, A., Rahimpour, M. R., & Raeissi, S. (2017). Investigation of propane addition to the feed stream of a commercial ethane thermal cracker as supplementary feedstock. Journal of the Taiwan Institute of Chemical Engineers, 81, 1-13. https: //doi.org/10.1016/j.jtice.2017.10.025

  • Gaitonde, V. N., Manjaiah, M., Maradi, S., Karnik, S. R., Petkar, P. M., & Paulo Davim, J. (2017). Multiresponse optimization in wire electric discharge machining (WEDM) of HCHCr steel by integrating response surface methodology (RSM) with differential evolution (DE). In J. P. Davim (Ed.), Computational Methods and Production Engineering (pp. 199-221). Woodhead Publishing.

  • Geng, Z., Wang, Z., Zhu, Q., & Han, Y. (2016). Multi-objective operation optimization of ethylene cracking furnace based on AMOPSO algorithm. Chemical Engineering Science, 153, 21-33. https: //doi.org/10.1016/j.ces.2016.07.009

  • Haaland, P. D. (1989). Experimental design in biotechnology. Marcel Dekker.

  • Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis with readings (4th Ed.). Prentice-Hall.

  • Han, Y., Geng, Z., Wang, Z., & Mu, P. (2016). Performance analysis and optimal temperature selection of ethylene cracking furnaces: A data envelopment analysis cross-model integrated analytic hierarchy process. Journal of Analytical and Applied Pyrolysis, 122, 35-44. https: //doi.org/10.1016/j.jaap.2016.10.025

  • Hillewaert, L. P., Dierickx, J. L., & Froment, G. F. (1988). Computer generation of reaction schemes and rate equations for thermal cracking. AIChE Journal, 34(1), 17-24. https: //doi.org/10.1002/aic.690340104

  • Joo, E., Lee, K., Lee, M., & Park, S. (2000). CRACKER — a PC based simulator for industrial cracking furnaces. Computers & Chemical Engineering, 24(2), 1523-1528. https: //doi.org/10.1016/S0098-1354(00)00558-5

  • Joo, E., & Park, S. (2001). Pyrolysis Reaction Mechanism for Industrial Naphtha Cracking Furnaces. Industrial & Engineering Chemistry Research, 40(11), 2409-2415. https: //doi.org/10.1021/ie000774o

  • Karimi, H., Cowperthwaite, E., Olayiwola, B., Farag, H., & McAuley, K. (2017). Modelling of heat transfer and pyrolysis reactions in an industrial ethylene cracking furnace. Canadian Journal of Chemical Engineering, 96(1), 33-48. https: //doi.org/10.1002/cjce.22844

  • Karimzadeh, R., Godini, H. R., & Ghashghaee, M. (2009). Flowsheeting of steam cracking furnaces. Chemical Engineering Research and Design, 87(1), 36-46. https: //doi.org/10.1016/j.cherd.2008.07.009

  • Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G. H., Larson, R. S., Mitchell, R. E., Petzold, L. R., Reynolds, W. C., Caracotsios, M., Stewart, W. E., Glarborg P., … & Puduppakkam, K. V. (2006). CHEMKIN Release 4.1. SReaction Design.

  • Kuritsyn, V., Arapov, D., Ekimova, A., & Yakupov, A. (2008). Modeling of pyrolysis of straight-run naphtha in a large-capacity type SRT-VI furnace. Chemistry and Technology of Fuels and Oils, 44(3), 180-189. https: //doi.org/10.1007/s10553-008-0038-x

  • Masoumi, M., Sadrameli, S. M., Towfighi, J., & Niaei, A. (2006). Simulation, optimization and control of a thermal cracking furnace. Energy, 31(4), 516-527. https: //doi.org/10.1016/j.energy.2005.04.005

  • Montgomery, D. C. (2017). Design and analysis of experiments (8th Ed.). John Wiley & Sons.

  • Nabavi, S., Rangaiah, G., Niaei, A., & Salari, D. (2009). Multiobjective optimization of an industrial LPG thermal cracker using a first principles model. Industrial & Engineering Chemistry Research, 48(21), 9523-9533. https: //doi.org/10.1021/ie801409m

  • Nabavi, S., Rangaiah, G., Niaei, A., & Salari, D. (2011). Design optimization of an LPG thermal cracker for multiple objectives. International Journal of Chemical Reactor Engineering, 9(1), 1-34. https: //doi.org/10.1515/1542-6580.2507

  • Nian, X., Wang, Z., & Qian, F. (2015). Strategy of changing cracking furnace feedstock based on improved group search optimization. Chinese Journal of Chemical Engineering, 23(1), 181-191. https: //doi.org/10.1016/j.cjche.2014.09.027

  • Noordin, M. Y., Venkatesh, V. C., Sharif, S., Elting, S., & Abdullah, A. (2004). Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology, 145(1), 46-58. https: //doi.org/10.1016/S0924-0136(03)00861-6

  • Omar, W. N. N. W., Nordin, N., Mohamed, M., & Amin, N. A. S. (2009). A two-step biodiesel production from waste cooking oil: Optimization of pre-treatment step. Journal of Applied Sciences, 9(17), 3098-3103. https: //doi.org/10.3923/jas.2009.3098.3103

  • Peller, A., Jambor, B., Hájeková, E., Hudec, P., Hadvinová, M., & Horňáček, M. (2018). Hydrogenation of liquid hydrocarbon fractions for production of non-conventional diesel fuel. Petroleum and Coal, 60(6), 1112-1119.

  • Podrojková, N., Orinak, A., Oriňáková, R., Procházková, L., Čuba, V., Patera, J., & Smith, R. (2018). Effect of different crystalline phase of ZnO/Cu nanocatalysts on cellulose pyrolysis conversion to specific chemical compounds. Cellulose, 25(10), 5623–5642. https: //doi.org/10.1007/s10570-018-1997-7

  • Reddy, P. V., Reddy, B., & Ramulu, P. (2020). Mathematical modelling for prediction of tube hydroforming process using RSM and ANN. International Journal of Industrial and Systems Engineering, 35(1), 13-27. https: //doi.org/10.1504/IJISE.2020.106848

  • Reyniers, P. A., Schietekat, C. M., Kong, B., Passalacqua, A., Van Geem, K. M., & Marin, G. B. (2017). CFD simulations of industrial steam cracking reactors: Turbulence–chemistry interaction and dynamic zoning. Industrial & Engineering Chemistry Research, 56(51), 14959-14971. https: //doi.org/10.1021/acs.iecr.7b02492

  • Sadrameli, S. M. (2015). Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 140, 102-115. https: //doi.org/10.1016/j.fuel.2014.09.034

  • Sadrameli, S. M. (2016). Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review. Fuel, 173, 285-297. https: //doi.org/10.1016/j.fuel.2016.01.047

  • Shi, H., Su, C., Cao, J., Li, P., Liang, J., & Zhong, G. (2015). Nonlinear adaptive predictive functional control based on the Takagi–Sugeno model for average cracking outlet temperature of the ethylene cracking furnace. Industrial & Engineering Chemistry Research, 54(6), 1849-1860. https: //doi.org/10.1021/ie503531z

  • Song, G., & Tang, L. (2018). Optimization model for the transfer line exchanger system. Computer Aided Chemical Engineering, 44, 1015-1020. https: //doi.org/10.1016/B978-0-444-64241-7.50164-6

  • Song, H., Su, C. L., Shi, H., Li, P., & Cao, J. T. (2019). Improved predictive functional control for ethylene cracking furnace. Measurement and Control, 52(5-6), 526-539. https: //doi.org/10.1177/0020294019842602

  • Sun, Y., Yang, G., Li, K., Zhang, L., & Zhang, L. (2016a). CO2 mineralization using basic oxygen furnace slag: process optimization by response surface methodology. Environmental Earth Sciences, 75(19), 1-10. https: //doi.org/10.1007/s12665-016-6147-7

  • Sun, Y., Zhang, J., & Zhang, L. (2016b). NH4Cl selective leaching of basic oxygen furnace slag: Optimization study using response surface methodology. Environmental Progress & Sustainable Energy, 35(5), 1387-1394. https: //doi.org/10.1002/ep.12365

  • Tanaka, T., Sakai, K., Yamashita, Y., Sakamoto, N., & Koyamada, K. (2007). Hierarchical response surface methodology for parameter optimization: Efficiency of a hierarchical RSM with a hessian matrix. In K. Koyamada, S. Tamura, & O. Ono (Eds.), Systems Modeling and Simulation (pp. 213-217). Tokyo, Japan: Springer Japan.

  • Toufighi, J., Karimzadeh, R., Saedi, G., Hosseini, S., Morafahi, M., Mokhtarani, B., Niaee, A., & Sadr, A. M. (2004). SHAHAB-A PC-based software for simulation of steam cracking furnaces (Ethane and Naphtha). Iranian Journal of Chemical Engineering, 1(2), 55-70.

  • Van Cauwenberge, D. J., Vandewalle, L. A., Reyniers, P. A., Van Geem, K. M., Marin, G. B., & Floré, J. (2017). Periodic reactive flow simulation: Proof of concept for steam cracking coils. AIChE Journal, 63(5), 1715-1726. https: //doi.org/10.1002/aic.15530

  • Van de Vijver, R., Vandewiele, N. M, Bhoorasingh, P. L., Slakman, B. L., Khanshan, F. S., Carstensen, H. H., Reyniers, M. F., Marin, G. B., West, R. H., & Van Geem, K. M. (2015). Automatic mechanism and kinetic model generation for gas- and solution-phase processes: A perspective on best practices, recent advances, and future challenges. International Journal of Chemical Kinetics, 47(4), 199-231. https: //doi.org/10.1002/kin.20902

  • Van Geem, K., Reyniers, M., & Marin, G. (2008). Challenges of modeling steam cracking of heavy feedstocks. Oil & Gas Science and Technology, 63(1), 79-94. https: //doi.org/10.2516/ogst:2007084

  • Van Goethem, M. W. M., Kleinendorst, F. I., van Leeuwen, C., & van Velzen, N. (2001). Equation-based SPYRO® model and solver for the simulation of the steam cracking process. Computers & Chemical Engineering, 25(4), 905-911. https: //doi.org/10.1016/S0098-1354(01)00655-X

  • Vangaever, S., Reyniers, P. A., Symoens, S. H., Ristic, N. D., Djokic, M. R., Marin, G. B., & Van Geem, K. M. (2020). Pyrometer-based control of a steam cracking furnace. Chemical Engineering Research and Design, 153, 380-390. https: //doi.org/10.1016/j.cherd.2019.10.023

  • Willems, P. A., & Froment, G. F. (1988). Kinetic modeling of the thermal cracking of hydrocarbons. 1. Calculation of frequency factors. Industrial & Engineering Chemistry Research, 27(11), 1959-1966. https: //doi.org/10.1021/ie00083a001

  • Yu, K., While, L., Reynolds, M., Wang, X., Liang, J. J., Zhao, L., & Wang, Z. (2018). Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization. Energy, 148, 469-481. https: //doi.org/10.1016/j.energy.2018.01.159

  • Zakria, M. H., Omar, A. A., & Bustam, M. A. (2016). Mercury removal of fluctuating ethane feedstock in a large scale production by sulphur impregnated activated carbon. Procedia Engineering, 148, 561-567. https: //doi.org/10.1016/j.proeng.2016.06.511

  • Zhang, Y., Reyniers, P. A., Du, W., Qian, F., Van Geem, K. M., & Marin, G. B. (2017). Incident radiative heat flux based method for the coupled run length simulation of steam cracking furnaces. Industrial & Engineering Chemistry Research, 56(14), 4156-4172. https: //doi.org/10.1021/acs.iecr.6b05013,

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2305-2020

Download Full Article PDF

Share this article

Recent Articles