PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 29 (1) Jan. 2021 / JST-2234-2020

 

Algorithm for B-scan Image Reconstruction in Optical Coherence Tomography

Kranti Patil, Anurag Mahajan, Balamurugan Subramani, Arulmozhivarman Pachiyappan and Roshan Makkar

Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021

DOI: https://doi.org/10.47836/pjst.29.1.28

Keywords: A-scan, b-scan, depth profile, filtering, image processing, optical coherence tomography (OCT), signal processing

Published on: 22 January 2021

Optical coherence tomography (OCT) is an evolving medical imaging technology that offers in vivo cross-sectional, sub-surface images in real-time. OCT has become popular in the medical as well as non-medical fields. The technique extensively uses for food industry, dentistry, dermatology, and ophthalmology. The technique is non-invasive and works on the Michelson interferometry principle, i.e., dependent on back reflections of the signal and its interference. The objective is to develop an algorithm for signal processing to construct an OCT image and then to enhance the quality of the image using image processing techniques like filtering. The image construction was primarily based on the Fourier transform (FT) of the dataset obtained by data acquisition. This FT could be performed rapidly with the extensively used algorithm of fast Fourier transform (FFT). The depth-wise information could be extracted from each A-scan, i.e., axial scan and also the B-scan was obtained from the A-scan to see the structure of sample. The maximum penetration depth achieved with proposed system was 2.82mm for 1024 data points. First and second layer of leaf were getting at thickness of 1mm and 1.6mm, respectively. A-scans for Human fingertip gave its first, second and third layer was at a thickness of 0.75mm, 0.9mm and 1.6mm, respectively. A-scans for foam sheet gave its first, second and third layer was at a thickness of 0.6mm, 0.75mm, and 0.85mm, respectively.

  • Ali, M., & Parlapalli, R. (2010). Signal processing overview of optical coherence tomography systems for medical imaging (SPRABB9–June). Texas Instruments. Retrieved October 09, 2020, from https://www.researchgate.net/publication/268356516_Signal_Processing_Overview_of_Optical_Coherence_Tomography_Systems_for_Medical_Imaging/link/54eb3d620cf25ba91c8652df/download}

  • Bhatia, P., Choudhari, S., Rodrigues, A., Patil, M., & Makkar, R. (2016, March 23-25). High resolution imaging system using spectral domain Optical Coherence Tomography using NIR source. In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 2212-2216). Chennai, India. doi: 10.1109/WiSPNET.2016.7566535

  • Choudhari, S., Patil, M., & Makkar, R. (2017). Modelling for spectral domain optical coherence tomography (SD-OCT) system. In I. Bhattacharya, S. Chakrabarti, H. Reehal & V. Lakshminarayanan (Eds.), Advances in Optical Science and Engineering (pp. 591-597). Singapore: Springer. doi: https://doi.org/10.1007/978-981-10-3908-9_74

  • Chua, J., Sim, R., Tan, B., Wong, D., Yao, X., Liu, X., ... & Schmetterer, L. (2020). Optical coherence tomography angiography in diabetes and diabetic retinopathy. Journal of Clinical Medicine, 9(6), 1-28. doi: https://doi.org/10.3390/jcm9061723

  • Drexler, W., & Fujimoto, J. G. (2008). OCT Technology and Applications. Biomedical Engineering. Heidelberg, Germany: Springer. doi: 10.1007/978-3-540-77550-8

  • Frosz, M. H., Juhl, M., & Lang, M. H. (2001). Optical coherence tomography: System design and noise analysis. Roskilde, Denmark: Risø National Laboratory.

  • Fujimoto, J., & Swanson, E. (2016). The development, commercialization, and impact of optical coherence tomography. Investigative Ophthalmology and Visual Science, 57(9), OCT1-OCT13. doi: https://doi.org/10.1167/iovs.16-19963

  • Kapoor, R., Whigham, B. T., & Al-Aswad, L. A. (2019). Artificial intelligence and optical coherence tomography imaging. The Asia-Pacific Journal of Ophthalmology, 8(2), 187-194. doi: 10.22608/APO.201904

  • Kim, S., Crose, M., Eldridge, W. J., Cox, B., Brown, W. J., & Wax, A. (2018). Design and implementation of a low-cost, portable OCT system. Biomedical Optics Express, 9(3), 1232-1243. doi: https://doi.org/10.1364/BOE.9.001232

  • Lee, S. S., Song, W., & Choi, E. S. (2020). Spectral domain optical coherence tomography imaging performance improvement based on field curvature aberration-corrected spectrometer. Applied Sciences, 10(10), 1-15. doi: https://doi.org/10.3390/app10103657

  • Lee, S. W., Song, H. W., Kim, B. K., Jung, M. Y., Kim, S. H., Cho, J. D., & Kim, C. S. (2011). Fourier domain optical coherence tomography for retinal imaging with 800-nm swept source: Real-time resampling in k-domain. Journal of the Optical Society of Korea, 15(3), 293-299.

  • Lee, W. D., Devarajan, K., Chua, J., Schmetterer, L., Mehta, J. S., & Ang, M. (2019). Optical coherence tomography angiography for the anterior segment. Eye and Vision, 6(1), 1-9. doi: https://doi.org/10.1186/s40662-019-0129-2

  • Liu, J., Zhu, J., Zhu, L., Yang, Q., Fan, F., & Zhang, F. (2020). Quantitative assessment of optical coherence tomography angiography algorithms for neuroimaging. Journal of Biophotonics, 13(9), 1-9. doi: https://doi.org/10.1002/jbio.202000181

  • Marks, D. L., Oldenburg, A., Reynolds, J. J., & Boppart, S. A. (2002, July 7-10). Digital dispersion compensation in optical coherence tomography. In Proceedings IEEE International Symposium on Biomedical Imaging (pp. 621-624). Washington, DC, USA. doi: 10.1109/ISBI.2002.1029334

  • McKeown, M. (2010). FFT Implementation on the TMS320VC5505, TMS320C5505, and TMS320C5515 DSPs (SPRABB6B). Application report, Texas instruments. Retrieved October 9, 2020, from https://www.ti.com/lit/an/sprabb6b/sprabb6b.pdf?ts=1606467818116&ref_url=https%253A%252F%252Fwww.google.com%252F

  • Murakami, T., & Ogawa, K. (2018, March 9-10). Speckle noise reduction of optical coherence tomography images with a wavelet transform. In 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 31-34). Batu Feringghi, Malaysia. doi: 10.1109/CSPA.2018.8368680

  • Panta, P., Lu, C. W., Kumar, P., Ho, T. S., Huang, S. L., Kumar, P., ... & John, R. (2019). Optical coherence tomography: Emerging in vivo optical biopsy technique for oral cancers. In P. Panta (ed.), Oral Cancer Detection (pp. 217-237). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-319-61255-3_11

  • Patil, K., Mahajan, A., Balamurugan, S., Arulmozhivarman, P., & Makkar, R. (2020, July 28-30). Development of signal processing algorithm for optical coherence tomography. In 2020 International Conference on Communication and Signal Processing (ICCSP) (pp. 1283-1287). Chennai, India. doi: 10.1109/ICCSP48568.2020.9182121

  • Petrov, D. A., Abdulkareem, S. N., Ghaleb, K. E., & Proskurin, S. G. (2016). An improved algorithm of structural image reconstruction with rapid scanning optical delay line for optical coherence tomography. Journal of Biomedical Photonics and Engineering, 2(2), 1-6.

  • Rawat, C. S., & Gaikwad, V. S. (2014, July 10-11). Signal analysis and image simulation for optical coherence tomography (OCT) systems. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) (pp. 626-631). Kanyakumari, India. doi: 10.1109/ICCICCT.2014.6993037

  • Schönfeldt-Lecuona, C., Kregel, T., Schmidt, A., Kassubek, J., Dreyhaupt, J., Freudenmann, R. W., ... & Pinkhardt, E. H. (2020). Retinal single-layer analysis with optical coherence tomography (OCT) in schizophrenia spectrum disorder. Schizophrenia Research, 219, 5-12. doi: https://doi.org/10.1016/j.schres.2019.03.022

  • Tang, S. N., Hsiang, C. Y., & Huang, S. J. (2018, June 25-29). Hardware/software codesign for portable optical coherence tomography (OCT) applications. In 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR) (pp. 24-28). Kitakyushu, Japan. doi: 10.1109/ICIEV.2018.8641052

  • Tomlins, P. H., & Wang, R. K. (2005). Theory, developments and applications of optical coherence tomography. Journal of Physics D: Applied Physics, 38(15), 2519-2535. doi: https://doi.org/10.1088/0022-3727/38/15/002

  • Zhang, Q., Zheng, F., Motulsky, E. H., Gregori, G., Chu, Z., Chen, C. L., & Wang, R. K. (2018). A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. Investigative Ophthalmology & Visual Science, 59(1), 203-211. doi: https://doi.org/10.1167/iovs.17-22953

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2234-2020

Download Full Article PDF

Share this article

Recent Articles