PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / JSSH Vol. 32 (3) Apr. 2024 / JST-4342-2023

 

A Review of Non-wood Lignocellulose Waste Material Reinforced Concrete for Light-weight Construction Applications

Hossam Saleh Salem Saeed, Agusril Syamsir, Mohd Supian Abu Bakar, Muhammad Imran Najeeb, Abdulrahman Alhayek, Zarina Itam, Muhammad Rizal Muhammad Asyraf and Mohd Radzi Ali

Pertanika Journal of Social Science and Humanities, Volume 32, Issue 3, April 2024

DOI: https://doi.org/10.47836/pjst.32.3.01

Keywords: Impact, light-weight construction, mechanical properties, non-wood lignocellulose waste, reinforced-concrete

Published on: 24 April 2024

In recent decades, non-wood lignocellulosic materials have gained significant attention, particularly in concrete applications for construction purposes. This study delves into utilising non-wood lignocellulosic materials for reinforcing concrete in construction applications. Lignocellulosic material emerges as a promising option for formulating new fibre cement compositions, thereby enhancing the sustainability, affordability, and performance of construction materials. Moreover, this research broadens the horizons of recycling agricultural waste by facilitating rational disposal and optimal utilisation. Through a comprehensive review, the study reveals that flax fibres, coir pith, prickly pear fibres, and rice husk ash waste exhibit superior workability compared to their counterparts. Furthermore, the strength of non-wood lignocellulosic reinforced concrete, incorporating bagasse ash, rice husk ash, and nutshell ash, peaked when fine aggregate replacement reached 15%, surpassing other types of non-wood lignocellulosic reinforced concrete. Adding a small quantity of prickly pear fibre to cement enhances the thermal conductivity of concrete, consequently improving compressive strength, flexural strength, tensile strength, and elastic modulus. This research is relevant to international research as it advances sustainable construction materials with desirable properties, benefiting society and various industries.

  • Abutaha, F., Razak, H. A., & Kanadasan, J. (2016). Effect of palm oil clinker (POC) aggregates on fresh and hardened properties of concrete. Construction and Building Materials, 112, 416–423. https://doi.org/10.1016/j.conbuildmat.2016.02.172

  • Ahsan, M. B., & Hossain, Z. (2018). Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry. Construction and Building Materials, 178, 1–9. https://doi.org/10.1016/j.conbuildmat.2018.05.101

  • Al-shayaa, M. S., Al-wabel, M., Herab, A. H., Sallam, A., Barjees, M., & Usman, A. R. A. (2021). Environmental issues in relation to agricultural practices and attitudes of farmers: A case study from Saudi Arabia. Saudi Journal of Biological Sciences, 28(1), 1080–1087. https://doi.org/10.1016/j.sjbs.2020.11.026

  • Alabduljabbar, H., Mohammadhosseini, H., Tahir, M. M., & Alyousef, R. (2021). Green and sustainable concrete production using carpet fibers waste and palm oil fuel ash. Materials Today: Proceedings, 39(2), 929–934. https://doi.org/10.1016/j.matpr.2020.04.047

  • Alhazmi, H., & Loy, A. C. M. (2021). Bioresource technology reports a review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: Current and future trends. Bioresource Technology Reports, 14, Article 100682. https://doi.org/10.1016/j.biteb.2021.100682

  • Ali, S. S. S., Razman, M. R., & Awang, A. (2020). The estimation and relationship of domestic electricity consumption and appliances ownership in Malaysia’s intermediate city. International Journal of Energy Economics and Policy, 10(6), 116–122. https://doi.org/10.32479/ijeep.8358

  • Ali, S. S. S., Razman, M. R., Awang, A., Asyraf, M. R. M., Ishak, M. R., Ilyas, R. A., & Lawrence, R. J. (2021). Critical determinants of household electricity consumption in a rapidly growing city. Sustainability, 13(8), Article 4441. https://doi.org/10.3390/su1308444

  • Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., & Asyraf, M. R. M. (2021). Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3), Article 423. https://doi.org/10.3390/polym13030423

  • Anitha, S. D. S., Dinesh, A., & Babu, V. S. (2020). Investigation of waste marble powder in the development of sustainable concrete. Materials Today: Proceedings, 44, 4223–4226. https://doi.org/10.1016/j.matpr.2020.10.536

  • Asyraf, M. R. M., Ishak, M. R., Norrrahim, M. N. F., Nurazzi, N. M., Shazleen, S. S., Ilyas, R. A., Rafidah, M., & Razman, M. R. (2021). Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. International Journal of Biological Macromolecules, 193, 1587–1599. https://doi.org/10.1016/j.ijbiomac.2021.10.221

  • Athira, G., Bahurudeen, A., & Appari, S. (2019). Sustainable alternatives to carbon intensive paddy field burning in India: A framework for cleaner production in agriculture, energy, and construction industries. Journal of Cleaner Production, 236, Article 117598. https://doi.org/10.1016/j.jclepro.2019.07.073

  • Azman, M. A., Asyraf, M. R. M., Khalina, A., Petrů, M., Ruzaidi, C. M., Sapuan, S. M., Wan Nik, W. B., Ishak, M. R., Ilyas, R. A., & Suriani, M. J. (2021). Natural fiber reinforced composite material for product design: A short review. Polymers, 13(12), Article 1917. https://doi.org/10.3390/polym13121917

  • Bakar, N., & Chin, S. C. (2021). Performance of bamboo fiber reinforced composites: Mechanical properties. Key Engineering Materials, 879, 284-293. https://doi.org/10.4028/www.scientific.net/KEM.879.284

  • Banu, S. S., Karthikeyan, J., & Jayabalan, P. (2020). Effect of agro-waste on strength and durability properties of concrete. Construction and Building Materials, 258, Article 120322. https://doi.org/10.1016/j.conbuildmat.2020.120322

  • Chavan, S. P., Salokhe, S. A., Nadagauda, P. A., Patil, S. T., & Mane, K. M. (2020). An investigational study on properties of concrete produced with industrial waste red mud. Materials Today: Proceedings, 42, 733–738. https://doi.org/10.1016/j.matpr.2020.11.156

  • de Sande, V. T., Sadique, M., Pineda, P., Bras, A., Atherton, W., & Riley, M. (2021). Potential use of sugar cane bagasse ash as sand replacement for durable concrete. Journal of Building Engineering, 39, Article 102277. https://doi.org/10.1016/j.jobe.2021.102277

  • Djamaluddin, A. R., Caronge, M. A., Tjaronge, M. W., Lando, A. T., & Irmawaty, R. (2020). Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Studies in Construction Materials, 12, Article e00325. https://doi.org/10.1016/j.cscm.2019.e00325

  • Drück, H., Mathur, J., Panthalookaran, V., & Sreekumar, V. M. (2020). Green buildings and sustainable engineering. Springer.

  • El-Messiry, M., El-Tarfawy, S., & El-Deeb, R. (2017). Enhanced impact properties of cementitious composites reinforced with pultruded flax/polymeric matrix fabric. Alexandria Engineering Journal, 56(3), 297–307. https://doi.org/10.1016/j.aej.2017.03.032

  • Foo, K. Y., & Hameed, B. H. (2009). Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Advances in Colloid and Interface Science, 152(1–2), 39–47. https://doi.org/10.1016/j.cis.2009.09.005

  • Feen, O. S., Mohamed, R. N., Mohamed, A., & A. Khalid, N. H. A. (2017). Effects of coarse palm oil clinker on properties of self-compacting lightweight concrete. Jurnal Teknologi, 79(6), 111-120. https://doi.org/10.11113/jt.v79.10593

  • Gar, P. S., Suresh, N., & Bindiganavile, V. (2017). Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Construction and Building Materials, 153, 929–936. https://doi.org/10.1016/j.conbuildmat.2017.07.107

  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials, 24(11), 2145–2150. https://doi.org/10.1016/j.conbuildmat.2010.04.045

  • Gregorova, A., Hrabalova, M., Kovalcik, R., & Wimmer, R. (2011). Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites. Polymer Engineering & Science, 51(1), 143-150. https://doi.org/10.1002/pen.21799

  • Hamid, N. H., Bakar, M. S. A., Ludin, N. A., Abdullah, U. H., & Najm, A. S. (2022). The processing and treatment of other types of oil palm biomass. In S. M. Sapuan, M. T. Paridah, S. O. A. SaifulAzry & S. H. Lee (Eds.), Oil Palm Biomass for Composite Panels (pp. 191-213). Elsevier Inc. https://doi.org/10.1016/b978-0-12-823852-3.00020-9

  • Heniegal, A. M., Ramadan, M. A., Naguib, A., & Agwa, I. S. (2020). Case studies in construction materials study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Studies in Construction Materials, 13, Article e00397. https://doi.org/10.1016/j.cscm.2020.e00397

  • Hulle, A., Kadole, P., & Katkar, P. (2015). Agave Americana leaf fibers. Fibers, 3(1), 64–75. https://doi.org/10.3390/fib3010064

  • Ikumapayi, C. M., Arum, C., & Alaneme, K. K. (2021). Reactivity and hydration behavior in groundnut shell ash based pozzolanic concrete. Materials Today: Proceedings, 38(2), 508–513. https://doi.org/10.1016/j.matpr.2020.02.385

  • Islam, M. M. U., Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 115, 307–314. https://doi.org/10.1016/j.jclepro.2015.12.051

  • Jaafar, C. N. A., Rizal, M. A. M., & Zainol, I. (2018). Effect of kenaf alkalization treatment on morphological and mechanical properties of epoxy / silica / kenaf composite. International Journal of Engineering and Technology, 7, 258–263. https://doi.org/10.14419/ijet.v7i4.35.22743

  • Jain, S., Sharma, A., Ash, F., Ash, R., Ash, W. S., & Ash, F. (2015). Application of industrial and agricultural waste in cement concrete. International Journal for Scientific Research & Development 3(7), 176–178.

  • Jha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash ( ScBA ) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44(1), 419–427. https://doi.org/10.1016/j.matpr.2020.09.751

  • Kadier, A., Ilyas, R. A., Huzaifah, M. R. M., Harihastuti, N., Sapuan, S. M., Harussani, M. M., Azlin, M. N. M., Yuliasni, R., Ibrahim, R., Atikah, M. S. N., Wang, J., Chandrasekhar, K., Islam, M. A., Sharma, S., Punia, S., Rajasekar, A., Asyraf, M. R. M., & Ishak, M. R. (2021). Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: Mechanism, advances, and future perspectives. Polymers, 13(19), Article 3365. https://doi.org/10.3390/polym13193365

  • Kaish, A. B. M. A., Odimegwu, T. C., Zakaria, I., Abood, M. M., & Nahar, L. (2021). Properties of concrete incorporating alum sludge in different conditions as partial replacement of fine aggregate. Construction and Building Materials, 284, Article 122669. https://doi.org/10.1016/j.conbuildmat.2021.122669

  • Kammoun, Z., & Trabelsi, A. (2019). Development of lightweight concrete using prickly pear fibres. Construction and Building Materials, 210, 269–277. https://doi.org/10.1016/j.conbuildmat.2019.03.167

  • Katare, V. D., & Madurwar, M. V. (2021). Process standardization of sugarcane bagasse ash to develop durable high-volume ash concrete. Journal of Building Engineering, 39, Article 102151. https://doi.org/10.1016/j.jobe.2021.102151

  • Kengkhetkit, N., & Amornsakchai, T. (2012). Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products, 40, 55–61. https://doi.org/10.1016/j.indcrop.2012.02.037

  • Khan, G. M. A., Razzaque, S. M. A., Hossain, M. M., Rahman, M. M., Paul, D. K., & Alam, M. S. (2010). Effect of chemical treatment on the properties of PALF / BSF reinforced polypropylene composites effect of chemical treatment on the properties of PALF / BSF reinforced polypropylene composites. Journal of Applied Science and Technology, 7(2), 101–105.

  • Kolawole, J. T., Olusola, K. O., Babafemi, A. J., Olalusi, O. B., & Fanijo, E. (2021). Blended cement binders containing bamboo leaf ash and ground clay brick waste for sustainable concrete. Materialia, 15, Article 101045. https://doi.org/10.1016/j.mtla.2021.101045

  • Kouta, N., Saliba, J., & Saiyouri, N. (2020). Effect of flax fibers on early age shrinkage and cracking of earth concrete. Construction and Building Materials, 254, Article 119315. https://doi.org/10.1016/j.conbuildmat.2020.119315

  • Kumar, J., Kumar, S., & Basarkar, S. S. (2016). Gulf Organisation for Research and Development Concrete using agro-waste as fine aggregate for sustainable built environment – A review. International Journal of Sustainable Built Environment, 5(2), 312–333. https://doi.org/10.1016/j.ijsbe.2016.06.003

  • Lee, B. H., Kim, H. S., Lee, S., Kim, H. J., & Dorgan, J. R. (2009). Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process. Composites Science and Technology, 69(15–16), 2573–2579. https://doi.org/10.1016/j.compscitech.2009.07.015

  • Li, J., Agarwal, A., Iveson, S. M., Kiani, A., Dickinson, J., Zhou, J., & Galvin, K. P. (2014). Recovery and concentration of buoyant cenospheres using an Inverted Reflux Classifier. Fuel Processing Technology, 123, 127–139. https://doi.org/10.1016/j.fuproc.2014.01.043

  • Libre, N. A., Shekarchi, M., Mahoutian, M., & Soroushian, P. (2011). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, 25(5), 2458–2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058

  • Lima, C., Caggiano, A., Faella, C., Martinelli, E., Pepe, M., & Realfonzo, R. (2013). Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Construction and Building Materials, 47, 547–559. https://doi.org/10.1016/j.conbuildmat.2013.04.051

  • Manickam, T., Cornelissen, G., Bachmann, R. T., Ibrahim, I. Z., Mulder, J., & Hale, S. E. (2015). Biochar application in Malaysian sandy and acid sulfate soils: Soil amelioration effects and improved crop production over two cropping seasons. Sustainability, 7(12), 16756–16770. https://doi.org/10.3390/su71215842

  • Memon, S. A., Javed, U., & Khushnood, R. A. (2019). Eco-friendly utilization of corncob ash as partial replacement of sand in concrete. Construction and Building Materials, 195, 165–177. https://doi.org/10.1016/j.conbuildmat.2018.11.063

  • Mohamad, N., Lakhiar, M. T., Samad, A. A. A., Mydin, M. A. O., Jhatial, A. A., Sofia, A. A., Goh, W. I., & Ali, N. (2019). Innovative and sustainable green concrete – A potential review on utilization of agricultural waste. IOP Conference Series: Materials Science and Engineering, 601(1), Article 012026. https://doi.org/10.1088/1757-899X/601/1/012026

  • Momoh, E. O., & Dahunsi, B. I. O. (2017). Suitability of oil-palm-broom-fibres as reinforcement for laterite-based roof tiles. International Journal of Software & Hardware Research in Engineering, 5(4), 27–35.

  • Momoh, E. O., & Osofero, A. I. (2019). Behaviour of oil palm broom fibres (OPBF) reinforced concrete. Construction and Building Materials, 221, 745–761. https://doi.org/10.1016/j.conbuildmat.2019.06.118

  • Momoh, E. O., & Osofero, A. I. (2020). Recent developments in the application of oil palm fi bers in cement composites. Frontiers of Structural and Civil Engineering, 14(1), 94–108. https://doi.org/10.1007/s11709-019-0576-9

  • Monteiro, S. N., Drelich, J. W., Lopera, H. A. C., Nascimento, L. F. C., da Luz, F. S., da Silva, L. C., dos Santos, J. L., da Costa Garcia Filho, F., de Assis, F. S., Lima, É. P., Pereira, A. C., Simonassi, N. T., Oliveira, M. S., da Cruz Demosthenes, L. C., Costa, U. O., Reis, R. H. M., & Bezerra, W. B. A. (2019). Natural fibers reinforced polymer composites applied in ballistic multilayered armor for personal protection - An overview. In S. Ikhmayies, J. Li, C. M. F. Vieira, J. I. Margem & F. D. O. Braga (Eds.), Green Materials Engineering (pp. 33-47). Springer. https://doi.org/10.1007/978-3-030-10383-5_4

  • Najeeb, M. I., Sultan, M. T. H., Andou, Y., Shah, A. U. ., Eksiler, K., Jawaid, M., & Ariffin, A. H. (2021). Characterization of lignocellulosic biomass from Malaysian’s Yankee pineapple AC6 toward composite application. Journal of Natural Fibers, 18(12), 2006–2018. https://doi.org/10.1080/15440478.2019.1710655

  • Nurazzi, N. M., Shazleen, S. S., Aisyah, H. A., Asyraf, M. R. M., Sabaruddin, F. A., Mohidem, N. A., Norrrahim, M. N. F., Kamarudin, S. H., Ilyas, R. A., & Ishak, M. R. (2021). Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: A review. Functional Composites and Structures, 3(4), Article 045003. https://doi.org/10.1088/2631-6331/ac351b

  • Norrrahim, M. N. F., Ariffin, H., Hassan, M. A., Ibrahim, N. A., Wan Yunus, W. M. Z., & Nishida, H. (2019). Utilisation of superheated steam in oil palm biomass pretreatment process for reduced chemical use and enhanced cellulose nanofibre production. International Journal of Nanotechnology, 16(11/12), 668–679. https://doi.org/10.1504/IJNT.2019.107360

  • Ogundipe, K. E., Ogunbayo, B. F., Olofinnade, O. M., Amusan, L. M., & Aigbavboa, C. O. (2021). Affordable housing issue: Experimental investigation on properties of eco-friendly lightweight concrete produced from incorporating periwinkle and palm kernel shells. Results in Engineering, 9, Article 100193. https://doi.org/10.1016/j.rineng.2020.100193

  • Omran, A. A. B., Mohammed, A. A. B. A., Sapuan, S. M., Ilyas, R. A., Asyraf, M. R. M., Koloor, S. S. R., & Petrů, M. (2021). Micro- and nanocellulose in polymer composite materials: A review. Polymers, 13(2), Article 231. https://doi.org/10.3390/polym13020231

  • Oorkalan, A., & Chithra, S. (2020). Effect of coconut coir pith as partial substitute for river sand in eco-friendly concrete. Materials Today: Proceedings, 21(1), 488–491. https://doi.org/10.1016/j.matpr.2019.06.639

  • Oyebisi, S., Igba, T., Raheem, A., & Olutoge, F. (2020). Predicting the splitting tensile strength of concrete incorporating anacardium occidentale nut shell ash using reactivity index concepts and mix design proportions. Case Studies in Construction Materials, 13, Article e00393. https://doi.org/10.1016/j.cscm.2020.e00393

  • Pil, L., Bensadoun, F., Pariset, J., & Verpoest, I. (2016). Why are designers fascinated by flax and hemp fibre composites? Composites Part A: Applied Science and Manufacturing, 83, 193–205. https://doi.org/10.1016/j.compositesa.2015.11.004

  • Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., Pereira, S., Cunha, V. M. C. F., & Varum, H. (2012). Corn cob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346–351. https://doi.org/10.1016/j.conbuildmat.2012.02.043

  • Radzi, A. M., Sapuan, S. M., Jawaid, M., & Mansor, M. R. (2019). Effect of alkaline treatment on mechanical, physical and thermal properties of roselle/sugar palm fiber reinforced thermoplastic polyurethane hybrid composites. Fibers and Polymers, 20(4), 847–855. https://doi.org/10.1007/s12221-019-1061-8

  • Ramakrishnan, K., Ganesh, V., Vignesh, G., Vignesh, M., Shriram, V., & Suryaprakash, R. (2021). Mechanical and durability properties of concrete with partial replacement of fine aggregate by sugarcane bagasse ash (SCBA). Materials Today: Proceedings, 42(2), 1070-1076. https://doi.org/10.1016/j.matpr.2020.12.172

  • Reddy, S. V. B., & Santhosha, V. (2018). Experimental study on fibre reinforced polymer concrete. International Journal of Applied Engineering Research, 13(15), 11844–11856.

  • Saba, N., Paridah, M. T., Jawaid, M., Abdan, K., & Ibrahim, N. A. (2015). Manufacturing and processing of kenaf fibre-reinforced epoxy composites via different methods. In S. M. Sapuan, M. Jawaid, N. Yusof & M. E. Hoque (Eds.), Manufacturing of Natural Fibre Reinforced Polymer Composites (pp. 101–124). Springer. https://doi.org/10.1007/978-3-319-07944-8_5

  • Selvasofia, S. D. A., Dinesh, A., & Sarath Babu, V. (2021). Investigation of waste marble powder in the development of sustainable concrete. Materials Today: Proceedings, 44(6), 4223–4226. https://doi.org/10.1016/j.matpr.2020.10.536

  • Shaaban, M. (2021). Heliyon properties of concrete with binary binder system of calcined dolomite powder and rice husk ash. Heliyon, 7, Article e06311. https://doi.org/10.1016/j.heliyon.2021.e06311

  • Shafigh, P., Bin, H., Zamin, M., & Zargar, M. (2014). Agricultural wastes as aggregate in concrete mixtures – A review. Construction and Building Materials, 53, 110–117. https://doi.org/10.1016/j.conbuildmat.2013.11.074

  • Singh, S. P., Jawaid, M., Yadav, B., & Supian, A. B. M. (2021). Mathematical modelling of infra-red evaporation characteristics of wheat straw black liquor. Pertanika Journal of Science and Technology, 29(4), 2845–2862. https://doi.org/10.47836/pjst.29.4.33

  • Sizirici, B., Fseha, Y., Cho, C. S., Yildiz, I., & Byon, Y. J. (2021). A review of carbon footprint reduction in construction industry, from design to operation. Materials, 14(20), Article 6094. https://doi.org/10.3390/ma14206094

  • Sreekala, M. S., Kumaran, M. G., & Thomas, S. (1997). Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66(5), 821–835. https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X

  • Supian, A. B. M., Sapuan, S. M., Zuhri, M. Y. M., Zainudin, E. S., & Ya, H. H. (2018). Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review. Defence Technology, 14(4), 291–305. https://doi.org/10.1016/j.dt.2018.04.004

  • Susilawati, A., Maftuah, E., & Fahmi, A. (2020). The utilization of agricultural waste as biochar for optimizing swampland: A review. IOP Conference Series: Materials Science and Engineering, 980(1), Article 012065. https://doi.org/10.1088/1757-899X/980/1/012065

  • Syamsir, A., Ean, L. W., Asyraf, M. R. M., Supian, A. B. M., Madenci, E., Özkılıç, Y. O., & Aksoylu, C. (2023). Recent advances of GFRP composite cross arms in energy transmission tower: A short review on design improvements and mechanical properties. Materials, 16(7), Article 2778. https://doi.org/10.3390/ma16072778

  • Thiruganasambanthan, T., Ilyas, R. A., Norrrahim, M. N. F., Kumar, T. S. M., Siengchin, S., Misenan, M. S. M., Farid, M. A. A., Nurazzi, N. M., Asyraf, M. R. M., Zakaria, S. Z. S., & Razman, M. R. (2022). Emerging developments on nanocellulose as liquid crystals: A biomimetic approach. Polymers, 14(8), 1 Article 546. https://doi.org/10.3390/polym14081546

  • Wu, F., Liu, C., Zhang, L., Lu, Y., & Ma, Y. (2018). Comparative study of carbonized peach shell and carbonized apricot shell to improve the performance of lightweight concrete. Construction and Building Materials, 188, 758–771. https://doi.org/10.1016/j.conbuildmat.2018.08.094

  • Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Composite Structures, 72(4), 429–437. https://doi.org/10.1016/j.compstruct.2005.01.013

  • Zeidabadi, Z. A., Bakhtiari, S., Abbaslou, H., & Ghanizadeh, A. R. (2018). Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Construction and Building Materials, 181, 301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271