PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdullah, W. A. T. W. (1992). Logic programming on a neural network. International Journal of Intelligent Systems, 7(6), 513-519. https://doi.org/10.1002/int.4550070604

  • Abdullah, W. A. T. W. (1993). The logic of neural networks. Physics Letters A, 176(3-4), 202-206. https://doi.org/10.1016/0375-9601(93)91035-4

  • Alzaeemi, S. A., & Sathasivam, S. (2021). Examining the forecasting movement of palm oil price using RBFNN-2SATRA metaheuristic algorithms for logic mining. IEEE Access, 9, 22542-22557. https://doi.org/10.1109/ACCESS.2021.3054816

  • Alzaeemi, S. A., Sathasivam, S., & Velavan, M. (2021). Agent-based modeling in doing logic programming in fuzzy hopfield neural network. International Journal of Modern Education and Computer Science, 13(2), 23-32. https://doi.org/10.5815/IJMECS.2021.02.03

  • Badawi, M. B., Awad, T. H., & Fahham, I. M. E. (2022). Application of artificial intelligence for the prediction of plain journal bearings performance. Alexandria Engineering Journal, 61(11), 9011-9029. https://doi.org/10.1016/j.aej.2022.02.041

  • Bilal, M., Masud, S., & Athar, S. (2012). FPGA design for statistics-inspired approximate sum-of-squared-error computation in multimedia applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(8), 506-510. https://doi.org/10.1109/TCSII.2012.2204841

  • Bodjanova, S. (2002). A generalized α-cut. Fuzzy Sets and Systems, 126(2), 157-176. https://doi.org/10.1016/S0165-0114(01)00062-8

  • Brys, T., Hauwere, Y. M. D., Cock, M. D., & Nowé, A. (2012, August 6-8). Solving satisfiability in fuzzy logics with evolution strategies. [Paper presentation]. 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), Berkeley, California. https://doi.org/10.1109/NAFIPS.2012.6290998

  • Fung, C. H., Wong, M. S., & Chan, P. W. (2019). Spatio-temporal data fusion for satellite images using hopfield neural network. Remote Sensing, 11(18), Article 2077. https://doi.org/10.3390/rs11182077

  • Garcez, A. S. A., & Zaverucha, G. (1999). Connectionist inductive learning and logic programming system. Applied Intelligence, 11(1), 59-77. https://doi.org/10.1023/A:1008328630915

  • Halaby, M. E., & Abdalla, A. (2016, May 9-11). Fuzzy maximum satisfiability. [Paper presentation]. INFOS ‘16: The 10th International Conference on Informatics and Systems, Giza, Egypt. https://doi.org/10.1145/2908446.2908476

  • Kubat, M. (1999). Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. The Knowledge Engineering Review, 13(4), 409-412. https://doi.org/10.1017/s0269888998214044

  • Hopfield, J. J., & Tank, D. W. (1985). “Neural” computation of decisions in optimization problems. Biological Cybernetics, 52(3), 141-152. https://doi.org/10.1007/BF00339943

  • Kho, L. C., Kasihmuddin, M. S. M., Mansor, M. A., & Sathasivam, S. (2020). Logic mining in league of legends. Pertanika Journal of Science and Technology, 28(1), 211-225.

  • Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation Computing, 4(1), 67-95. https://doi.org/10.1007/BF03037383

  • Lee, C. C., & Gyvez, J. P. (1996). Color image processing in a cellular neural-network environment. IEEE Transactions on Neural Networks, 7(5), 1086-1098. https://doi.org/10.1109/72.536306

  • Little, W. A. (1974). The existence of persistent states in the brain. Mathematical Biosciences, 19(1-2), 101-120. https://doi.org/10.1016/0025-5564(74)90031-5

  • Maandag, P. (2012). Solving 3-SAT [Bachelor dissertation]. Radboud University Nijmegen, Netherlands. https://www.cs.ru.nl/bachelors-theses/2012/Peter_Maandag___3047121___Solving_3-Sat.pdf

  • Mansor, M. A., & Sathasivam, S. (2021). Optimal performance evaluation metrics for satisfiability logic representation in discrete hopfield neural network. International Journal of Mathematics and Computer Science, 16(3), 963-976.

  • Mansor, M. A., Sathasivam, S., & Kasihmuddin, M. S. M. (2018). 3-satisfiability logic programming approach for cardiovascular diseases diagnosis. AIP Conference Proceedings, 1974(1), Article 020022. https://doi.org/10.1063/1.5041553

  • De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48. https://doi.org/10.1016/j.neucom.2015.12.114

  • Nasir, M., Sadollah, A., Grzegorzewski, P., Yoon, J. H., & Geem, Z. W. (2021). Harmony search algorithm and fuzzy logic theory: An extensive review from theory to applications. Mathematics, 9(21), 1-46. https://doi.org/10.3390/math9212665

  • Novák, V., Perfilieva, I., & Močkoř, J. (1999). Mathematical principles of fuzzy logic. Springer. https://doi.org/10.1007/978-1-4615-5217-8

  • Pan, J., Pottimurthy, Y., Wang, D., Hwang, S., Patil, S., & Fan, L. S. (2020). Recurrent neural network based detection of faults caused byparticle attrition in chemical looping systems. Powder Technology, 367, 266-276. https://doi.org/10.1016/j.powtec.2020.03.038

  • Pourabdollah, A., Mendel, J. M., & John, R. I. (2020). Alpha-cut representation used for defuzzification in rule-based systems. Fuzzy Sets and Systems, 399, 110-132. https://doi.org/10.1016/j.fss.2020.05.008

  • Rhodes, P. C., & Menani, S. M. (1992). Towards a fuzzy-logic programming system: A 1st-order fuzzy logic. Knowledge-Based Systems, 5(2), 106-116. https://doi.org/10.1016/0950-7051(92)90001-V

  • Sathasivam, S. (2006). Logic mining in neural networks. [Unpublished Doctoral Dissertation] Universiti Malaya, Malaysia.

  • Sathasivam, S. (2010). Upgrading logic programming in hopfield network. Sains Malaysiana, 39(1), 115-118.

  • Sathasivam, S., & Abdullah, W. A. T. W. (2008). Logic learning in hopfield networks. Modern Applied Science, 2(3), 57-63. https://doi.org/10.5539/mas.v2n3p57

  • Sathasivam, S., Mamat, M., Kasihmuddin, M. S. M., & Mansor, M. A. (2020). Metaheuristics approach for maximum k satisfiability in restricted neural symbolic integration. Pertanika Journal of Science and Technology, 28(2), 545-564.

  • Velavan, M., Yahya, R. Z., Halif, M. N. A., & Sathasivam, S. (2015). Mean field theory in doing logic programming using hopfield network. Modern Applied Science, 10(1), 154-160. https://doi.org/10.5539/mas.v10n1p154

  • Wang, L. X. (1996). A course in fuzzy systems and control. Prentice-Hall Inc.

  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. https://doi.org/10.3354/cr030079

  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(1), 28-44. https://doi.org/10.1109/TSMC.1973.5408575

  • Zadeh, L. A. (1974). The concept of a linguistic variable and its application to approximate reasoning. In K. S. Fu & J. T. Tou (Eds.), Learning Systems and Intelligent Robots (pp. 1-10). Springer. https://doi.org/10.1007/978-1-4684-2106-4_1

  • Zadeh, L. A. (1979). A theory of approximation reasoning. In J. E. Hayes, D. Mishie & L. I. Mikulish (Eds.), Machine Intelligence (pp. 149-194). Elservier.

  • Zamri, N. E., Alway, A., Mansor, M. A., Kasihmuddin, M. S. M., & Sathasivam, S. (2020). Modified imperialistic competitive algorithm in hopfield neural network for boolean three satisfiability logic mining. Pertanika Journal of Science and Technology, 28(3), 983-1008.

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles