e-ISSN 2231-8542
ISSN 1511-3701
Almira Ari ef Rahma Putri, Achmadi Priyatmojo and Ani Widiastuti
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 3, August 2022
DOI: https://doi.org/10.47836/pjtas.45.3.13
Keywords: Altitude, blister blight, Exobasidium vexans, genetic diversity
Published on: 8 August 2022
Indonesia is one of the ten largest tea-producing countries in the world, with a plantation area of 104,420 hectares and a production of 139,285 thousand tons in 2018. Blister blight can cause massive crop losses across tea-growing regions of Asia, particularly in India, Sri Lanka, Indonesia, and Japan. The infection causes a 40% yield loss. The study aimed to determine the genetic diversity in Exobasidium vexans, that cause blister blight based on polymerase chain reaction-random amplified polymorphic DNA (PCR-RAPD). Sampling was conducted at Pagilaran, a tea plantation located in Central Java, Indonesia, with sampling based on altitude, Andongsili (>1,000 meters above sea level [masl]), Kayulandak (±1,000 masl), and Pagilaran (<1,000 masl) with clones TRI 2024, TRI 2025, Gambung 3, Gambung 7, Gambung 9, and Pagilaran 15. This study used the PCR method using internal transcribed spacers (ITS) 1F and ITS 4 primers. Four primers used in PCR-RAPD were OPA-02, OPA-03, OPA-05, and OPB-17. The characteristics of E. vexans , observed were ellipse-shaped basidiospore, hyaline, unicellular with one septate, formed at the tip of the sterigma with hyaline and elliptical shapes, with a range size of 7–15.5 μm x 2.3–4.5 μm. PCR-RAPD method was able to show the diversity of E. vexans , samples between clones, in which three clusters were formed at a coefficient of 0.63. Cluster I consisted of TRI 2024 Andongsili and PGL 15 Pagilaran; Cluster II consisted of TRI 2025 Andongsili and Gambung 3 Andongsili; Cluster III consisted of Gambung 7 Andongsili, Gambung 7 Kayulandak, and Gambung 9 Andongsili.
Abeysinghe, D. C., Mewan, K. M., Kumari, W. M. S. S., & Kumara, K. L. W. (2015). Morphological and molecular differences of Exobasidium vexans Massee causing blister blight disease of tea. Journal of the Korean Tea Society, 21, 72-76.
Aboul-Maaty, N. A. F., & Oraby, H. A. S. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43, 25. https://doi.org/10.1186/s42269-019-0066-1
Ahmed, S., Griffin, T., Cash, S. B., Han, W., Matyas, C., Long, C., Orians, C. M., Stepp, J. R., Robbat, A., & Xue, D. (2018). Global climate change, ecological stress, and tea production. In. W. Y. Han, X. Li, & G. Ahammed (Eds.), Stress physiology of tea in the face of climate change (pp. 1-23). Springer. https://doi.org/10.1007/978-981-13-2140-5_1
Ahuja, P. S., Gulati, A., Singh, R. D., Sud, R. K., & Boruah, R. C. (2013). Science of tea technology. Scientific Publishers.
Barooahi, A. K., Kalita, N., Borthakur, M. N., Barooaht, A., & Barman, T. (2002). Non-tariff trade barriers — Pesticide residues and heavy metals in tea and approaches to mitigate them. Two Bud, 59(2), 1–8.
Basu, M. A., Bera, B., & Raja, A. (2010). Tea statistics: Global scenario. International Journal of Tea Science, 8, 121-124.
Chaliha, C., & Kalita, E. (2020). Blister blight disease of tea: An enigma. In K. Dmitry (Ed.), Diagnosis of plant diseases. IntechOpen. https://doi/org/10.5772/intechopen.95362
Dufrene, B., Amrouk, E. M., Phukan, J., & Peiris, M. (2020, March 23). The 2020 global tea market report. Tea & Coffee Track Journal. https://www.teaandcoffee.net/feature/25850/the-2020-global-tea-market-report/
Gusmiaty., Restu, M., Asrianny., & Larekeng, S. H. (2016). RAPD marker polymorphism for genetic diversity analysis Pinus merkusii in Unhas Experimental Forest. Jurnal Natur Indonesia, 16(2), 47-53.
Joshi, S. D., Balamurgan, A., Rahul, P. R., Mandal, A. K. A., Kumar, R. R., Baby, U. I., Premkumar, R., & Muraleedhran, N. (2009). Genetic and morphological variation of tea (Camellia sinensis) blister blight pathogen (Exobasidium vexans) in Southern India revealed by RAPD markers and spore morphology. Journal Tea Science, 74, 52-61.
Karunarathna, K. H. T., Mewan, K. M., Weerasera, O. V. D. S. J., Perera, S. A. C. N., & Edirisinghe, E. N. U. (2020). A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.). Plant Cell Reports, 40, 351-359. https://doi.org/10.1007/s00299-020-02637-6
Kolade, O. A., Olowolafe, M. O., & Fawole, I. (2016). Characterization of mutant cowpea (Vigna unguiculata (L) Walp) lines using random amplified polymorphic DNAs (RAPDs) and amplified fragment length polymorphism (AFLP) markers. African Journal of Biotechnology, 15(45), 2530-2537. https://doi.org/10.5897/AJB2015.14539
Kumar, A., Pandey, A., Aochen, C., & Pattanayak, A. (2015). Evaluation of genetic diversity and inter-relationship of agro-morphological characters in soybean (Glycine max) genotype were evaluated. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85, 397–405. https://doi.org/10.1007/s40011-014-0356-1
Lee, K. J., Lee, J. R., Sebastin, R., Shin, M. J., Kim, S. H., Cho, G. T., & Hyun, D. Y. (2019). Assessment of genetic diversity of tea germplasm for its management and sustainable use in Korea genebank. Forests, 10(9), 780. https://doi.org/10.3390/f10090780
Lucic, A., Isajev, V., Rakonjac, L., Mataruga, M., Babic, V., Ristic, D., & Drinic, S. M. (2011). Application of various methods to analyze the genetic diversity of Austrian pine (Pinus nigra) and scots pine (Pinus sylvestris). Genetika, 43(3), 477-486. https://doi.org/10.2298/GENSR1103477L
Martono, B., & Syafaruddin, S. (2018). Genetic variability of 21 tea genotypes (Camellia sinensis (L.) O. Kuntze) based on RAPD markers. Jurnal Tanaman Industri dan Penyegar, 5(2), 77-86.
Meegahakumbura, M. K., Wambulwa, M. C., Li, M., Thapa, K. K., Sun, Y., Moller, M., Xu, J., Yang, J., Liu, J., Liu, B., Li, D., & Gao, L. (2018). Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India based on nuclear microsatellites and cpDNA sequence data. Frontiers in Plant Science, 8, 2270. https://doi.org/10.3389/fpls.2017.02270
Mohktar, M., & Nagao, M. (2019). Histological description of Exobasidium vexans infection on tea leaves (Camellia sinensis). Songklanakarin Journal Science and Technology, 41(5), 1021-1028.
Nandani, K., & Thakur, S. K. (2014). Randomly amplified polymorphic DNA - A brief review. American Journal of Animal and Veterinary Sciences, 9(1), 6-13. https://doi.org/10.3844/AJAVSP.2014.6.13
Nilsson, R. H., Hyde, K. D., Pawłowska, J., Ryberg, M., Tedersoo, L., Aas, A. B., Alves, A., Anderson, C. L., Antonelli, A., Arnold, A. E., Bahnmann, B., Bahram, M., Bengtsson-Palme, J., Berlin, A., Branco, S., Chomnunti, P., Dissanayake, A., Drenkhan, R., Friberg, H., ... Aberenkov, K. (2014). Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 67, 11-19. http://doi.org/10.1007/s13225-014-0291-8
Ochieng, J., Kirimi, L., & Mathenge, M. (2016). Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS: Wageninge Journal of Life Sciences, 77(1), 71-78. https://doi.org/10.1016/j.njas.2016.03.005
Rezamela, E., Fauziah, F., & Dalimoenthe, S. H. (2016). The effect of drought period on attack intensity of Empoasca sp. and blister blight in Gambung tea plantation. Indonesian Journal of Tea and Chichona Research, 19, 169-178. https://doi.org/10.22302/pptk.jur.jptk.v19i2.111
Sub Directorate of Estate Crops Statistics. (2019). Statistik teh Indonesia 2018 [Statistics of Indonesian tea 2018]. Badan Pusat Statistik. https://www.bps.go.id/publication/2019/11/22/02661f42709afc66345c26bd/statistik-teh-indonesia-2018.html
ISSN 1511-3701
e-ISSN 2231-8542