e-ISSN 2231-8542
ISSN 1511-3701
Gede Kamalesha, Fenny Martha Dwivany, Husna Nugrahapraja and Rika Rahma Putri
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 2, May 2022
DOI: https://doi.org/10.47836/pjtas.45.2.12
Keywords: AP2/ERF domain, comparative genomics, ethylene response factor 1, sequence annotation
Published on: 13 May 2022
Musa balbisiana (B genome) has been observed to have a higher tolerance of biotic and abiotic stresses than Musa acuminata (A genome). Ethylene Response Factor 1 (ERF1) is a gene activator for pathogenesis-related proteins (PR proteins) such as basic chitinases and beta-1,3-glucanase. There are numerous ERF1 gene studies about Oryza sativa, but information about the banana ERF1 gene, especially in the B genome (Musa balbisiana “Pisang Klutuk Wulung”), has still not been explored thoroughly. Using annotated genomic data in an A genome (Musa acuminata ssp. malaccensis) and genomic data in a B genome (Musa balbisiana “Pisang Klutuk Wulung”), research on the ERF1 gene can be conducted at the gene sequences and amino acid sequences levels. The Musa acuminata (A genome) ERF1 gene nucleotide sequence was retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The Musa balbisiana (B genome) ERF1 gene nucleotide sequence was identified with the nucleotide Basic Local Alignment Search Tool (BLASTn) using an A genome ERF1 gene sequence as a query. Both ERF1 gene nucleotide sequences and amino acid sequences in the A and B genomes were annotated and compared. Seven annotated genome ERF1 gene sequences from the A and B genomes were identified with the probability that these genes were actively transcribed in cell activity. ERF1 gene comparisons between the A and B genomes showed that nucleotide composition, gene structure, gene position in each respective chromosome, ERF clusterization, identified motif, and amino acid composition in each of the identified motifs have similar characteristics.
Adams-Phillips, L., Barry, C., & Giovannoni, J. (2004). Signal transduction systems regulating fruit ripening. Trends in Plant Science, 9(7), 331–338. https://doi.org/10.1016/j.tplants.2004.05.004
Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings International Conference on Intelligent Systems for Molecular Biology, 2, 28–36.
Bapat, V. A., Trivedi, P. K., Ghosh, A., Sane, V. A., Ganapathi, T. R., & Nath, P. (2010). Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnology Advances, 28(1), 94–107. https://doi.org/10.1016/j.biotechadv.2009.10.002
Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: A sequence logo generator. Genome Research, 14(6), 1188–1190. https://doi.org/10.1101/gr.849004
de Bellaire, L. d. L., Foure, E., Abadie, C., & Carlier, J. (2010). Black leaf streak disease is challenging the banana Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B. M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., … Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296(5565), 92–100. https://doi.org/10.1126/science.1068275
Huang, Z., Zhang, Z., Zhang, X., Zhang, H., Huang, D., & Huang, R. (2004). Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letters, 573(1–3), 110–116. https://doi.org/10.1016/j.febslet.2004.07.064
Izawa, T., & Shimamoto, K. (1996). Becoming a model plant: The importance of rice to plant science. Trends in Plant Science, 1(3), 95–99. https://doi.org/10.1016/S1360-1385(96)80041-0
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27
Karlova, R., Chapman, N., David, K., Angenent, G. C., Seymour, G. B., & de Maagd, R. A. (2014). Transcriptional control of fleshy fruit development and ripening. Journal of Experimental Botany, 65(16), 4527–4541. https://doi.org/10.1093/jxb/eru316
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lakhwani, D., Pandey, A., Dhar, Y. V., Bag, S. K., Trivedi, P. K., & Asif, M. H. (2016). Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Scientific Reports, 6, 18878. https://doi.org/10.1038/srep18878
Liu, L., White, M. J., & MacRae, T. H. (1999). Transcription factors and their genes in higher plants functional domains, evolution and regulation. European Journal of Biochemistry, 262(2), 247–257. https://doi.org/10.1046/j.1432-1327.1999.00349.x
Liu, M., Sun, W., Ma, Z., Zheng, T., Huang, L., Wu, Q., Zhao, G., Tang, Z., Bu, T., Li, C., & Chen, H. (2019). Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum tataricum). BMC Plant Biology, 19(1), 84. https://doi.org/10.1186/s12870-019-1681-6
Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
Marín, D. H., Romero, R. A., Guzmán, M., & Sutton, T. B. (2003). Black sigatoka: An increasing threat to banana cultivation. Plant Disease, 87(3), 208–222. https://doi.org/10.1094/PDIS.2003.87.3.208
Nakano, T., Suzuki, K., Fujimura, T., & Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140(2), 411–432. https://doi.org/10.1104/pp.105.073783
Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4
Okamuro, J. K., Caster, B., Villarroel, R., Van Montagu, M., & Jofuku, K. D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 7076–7081. https://doi.org/10.1073/pnas.94.13.7076
Pirrello, J., Prasad, B. C., Zhang, W., Chen, K., Mila, I., Zouine, M., Latché, A., Pech, J. C., Ohme-Takagi, M., Regad, F., & Bouzayen, M. (2012). Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology, 12, 190. https://doi.org/10.1186/1471-2229-12-190
Rashid, M., Guangyuan, H., Guangxiao, Y., Hussain, J., & Xu, Y. (2012). AP2/ERF transcription factor in rice: Genome-wide canvas and syntenic relationships between monocots and eudicots. Evolutionary Bioinformatics, 8, EBO-S9369. https://doi.org/10.4137/EBO.S9369
Reyes, J. C., Muro-Pastor, M. I., & Florencio, F. J. (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant Physiology, 134(4), 1718–1732. https://doi.org/10.1104/pp.103.037788
Riechmann, J. L., & Meyerowitz, E. M. (1998). The AP2/EREBP family of plant transcription factors. Biological Chemistry, 379(6), 633–646. https://doi.org/10.1515/bchm.1998.379.6.633
Simmonds, N. W. (1959). Bananas. Longman.
Solovyev, V. (2007). Statistical approaches in eukaryotic gene prediction. In D. Balding, C. Cannings, & M. Bishop (Eds.), Handbook of statistical genetics (3rd ed.). Wiley-Interscience. https://doi.org/10.1002/0470022620.bbc06
Sumardi, I., & Wulandari, M. (2010). Anatomy and morphology character of five Indonesian banana cultivars (Musa spp.) of different ploidy level. Biodiversitas, Journal of Biological Diversity, 11(4), 167–175. https://doi.org/10.13057/biodiv/d110401
Tieman, D. M., Ciardi, J. A., Taylor, M. G., & Klee, H. J. (2001). Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. The Plant Journal, 26(1), 47–58. https://doi.org/10.1046/j.1365-313x.2001.01006.x
Vinogradov, A. E. (2004). Compactness of human housekeeping genes: Selection for economy or genomic design?. Trends in Genetics, 20(5), 248–253. https://doi.org/10.1016/j.tig.2004.03.006
Wessler, S. R. (2005). Homing into the origin of the AP2 DNA binding domain. Trends in Plant Science, 10(2), 54–56. https://doi.org/10.1016/j.tplants.2004.12.007
ISSN 1511-3701
e-ISSN 2231-8542