PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdallah, A. A., Jao, C. S., Kassas, Z. M., & Shkel, A. M. (2022). A pedestrian indoor navigation system using deep-learning-aided cellular signals and zupt-aided foot-mounted Imus. IEEE Sensors Journal, 22(6), 5188-5198. https://doi.org/10.1109/jsen.2021.3118695

  • Adege, A., Lin, H. P., Tarekegn, G., & Jeng, S. S. (2018). Applying deep neural network (DNN) for robust indoor localization in multi-building environment. Applied Sciences, 8(7), Article 1062. https://doi.org/10.3390/app8071062

  • Al-habashna, A., Wainer, G., & Aloqaily, M. (2022). Simulation modelling practice and theory machine learning-based indoor localization and occupancy estimation using 5G ultra-dense networks. Simulation Modelling Practice and Theory, 118, Article 102543. https://doi.org/10.1016/j.simpat.2022.102543

  • Alani, S., Baseel, A., Hamdi, M. M., & Rashid, S. A. (2020). A hybrid technique for single-source shortest path-based on a* algorithm and ant colony optimization. IAES International Journal of Artificial Intelligence (IJ-AI), 9(2), Article 356. https://doi.org/10.11591/ijai.v9.i2.pp356-363

  • Alves, R., De Morais, J. S., & Lopes, C. R. (2019). Indoor navigation with human assistance for service robots using D∗Lite. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4106-4111). IEEE Publishing. https://doi.org/10.1109/SMC.2018.00696

  • Babakhani, P., Merk, T., Mahlig, M., Sarris, I., Kalogiros, D., & Karlsson, P. (2021). Bluetooth direction finding using recurrent neural network. In 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 1-7). IEEE Publishing. https://doi.org/10.1109/IPIN51156.2021.9662611

  • Bakale, V. A., Kumar V S, Y., Roodagi, V. C., Kulkarni, Y. N., Patil, M. S., & Chickerur, S. (2020). Indoor navigation with deep reinforcement learning. In 2020 International Conference on Inventive Computation Technologies (ICICT) (pp. 660-665). IEEE Publishing. https://doi.org/10.1109/icict48043.2020.9112385

  • Chae, Y. J., Lee, H. W., Kim, J. H., Hwang, S. W., & Park, Y. Y. (2023). Design of a mixed reality system for simulating indoor disaster rescue. Applied Sciences, 13(7), Article 4418. https://doi.org/10.3390/app13074418

  • Chan, P. Y., Chao, J. C., & Wu, R. B. (2023). A Wi-Fi-based passive indoor positioning system via entropy-enhanced deployment of Wi-Fi sniffers. Sensors, 23(3), Article 1376. https://doi.org/10.3390/s23031376

  • Che, F., Ahmed, Q. Z., Lazaridis, P. I., Sureephong, P., & Alade, T. (2023). indoor positioning system (IPS) using ultra-wide bandwidth (UWB) for industrial internet of things (IIoT). Sensors, 23(12), Article 5710. https://doi.org/10.3390/s23125710

  • Chidsin, W., Gu, Y., & Goncharenko, I. (2021). AR-based navigation using RGB-D camera and hybrid map. Sustainability, 13(10), Article 5585. https://doi.org/10.3390/su13105585

  • Chumkamon, S., Tuvaphanthaphiphat, P., & Keeratiwintakorn, P. (2008). A blind navigation system using RFID for indoor environments. In 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Vol. 2, pp. 765-768). IEEE Publishing. https://doi.org/10.1109/ECTICON.2008.4600543

  • Chung, H. L., Chin, K. Y., & Wang, C. S. (2021). Development of a head-mounted mixed reality museum navigation system. In 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII) (pp. 111-114). IEEE Publishing. https://doi.org/10.1109/ICKII51822.2021.9574731

  • Dao, V. L., & Salman, S. M. (2022). Deep neural network for indoor positioning based on channel impulse response. In 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/etfa52439.2022.9921735

  • Dong, Z. Y., Xu, W. M., & Zhuang, H. (2018). Research on zigbee indoor technology positioning based on RSSI. Procedia Computer Science, 154, 424-429. https://doi.org/10.1016/j.procs.2019.06.060

  • El-Sheimy, N., & Li, Y. (2021). Indoor navigation: State of the art and future trends. Satellite Navigation, 2(1), 1-23. https://doi.org/10.1186/s43020-021-00041-3

  • Espindola, A., Viegas, E. K., Traleski, A., Pellenz, M. E., & Santin, A. O. (2021). A deep autoencoder and RNN model for indoor localization with variable propagation loss. In 2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 391-396). IEEE Publishing. https://doi.org/10.1109/wimob52687.2021.9606346

  • Garcia, A., Mittal, S. S., Kiewra, E., & Ghose, K. (2019). A convolutional neural network feature detection approach to autonomous quadrotor indoor navigation. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 74-81). IEEE Publishing. https://doi.org/10.1109/iros40897.2019.8968222

  • Ge, H., Sun, Z., Chiba, Y., & Koshizuka, N. (2022). Accurate indoor location awareness based on machine learning of environmental sensing data. Computers and Electrical Engineering, 98, Article 107676. https://doi.org/10.1016/j.compeleceng.2021.107676

  • Gong, J., Ren, J., & Zhang, Y. (2021). DeepNav: A scalable and plug-and-play indoor navigation system based on visual CNN. Peer-to-Peer Networking and Applications, 14, 3718-3736. https://doi.org/10.1007/s12083-021-01216-0

  • Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 855-864). ACM Publishing. https://doi.org/10.1145/2939672.2939754

  • Giney, S., Erdogan, A., Aktas, M., & Ergun, M. (2020). Wi-Fi based indoor positioning system with using deep neural network. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 225-228). IEEE Publishing. https://doi.org/10.1109/tsp49548.2020.9163548

  • Guo, Y., Zhu, J., Wang, Y., Chai, J., Li, W., Fu, L., Xu, B., & Gong, Y. (2020). A virtual reality simulation method for crowd evacuation in a multiexit indoor fire environment. ISPRS International Journal of Geo-Information, 9(12), Article 750. https://doi.org/10.3390/ijgi9120750

  • Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet of Things Journal, 6(6), 10639-10651. https://doi.org/10.1109/JIOT.2019.2940368

  • Hsieh, H. Y., Prakosa, S. W., & Leu, J. S. (2018). Towards the implementation of recurrent neural network schemes for WiFi fingerprint-based indoor positioning. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/vtcfall.2018.8690989

  • Jamil, F., & Kim, D. (2019). Improving accuracy of the alpha–beta filter algorithm using an ANN-based learning mechanism in indoor navigation system. Sensor, 19(18), Article 3946. https://doi.org/10.3390/s19183946

  • Jang, J. W., & Hong, S. N. (2018). Indoor localization with WiFi fingerprinting using convolutional neural network. In 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 753-758). IEEE Publishing. https://doi.org/10.1109/icufn.2018.8436598

  • Jia, S. (2023). Analysis of path planning algorithms for service robots applied in indoor environments. Highlights in Science, Engineering and Technology, 52, 192-201. https://doi.org/10.54097/hset.v52i.8888

  • Jiang, C., Chen, Y., Chen, C., Jia, J., Sun, H., Wang, T., & Hyyppa, J. (2022). Implementation and performance analysis of the PDR/GNSS integration on a smartphone. GPS Solutions, 26(3), Article 81. https://doi.org/10.1007/s10291-022-01260-0

  • Jothi, J. A. G., & Sabeenian, A. N. R. S. (2022). Design and development of an indoor navigation system using denoising autoencoder based convolutional neural network for visually impaired people. Multimedia Tools and Applications, 81(3), 3483-3514. https://doi.org/10.1007/s11042-021-11287-z

  • Jwo, D. J., Biswal, A., & Mir, I. A. (2023). Artificial neural networks for navigation systems: A review of recent research. Applied Sciences, 13(7), Article 4475. https://doi.org/10.3390/app13074475

  • Khan, S., Patil, A., Kadam, G., & Jadhav, A. (2020). Indoor navigation in stadium using virtual reality. ITM Web of Conferences, 32, Article 03002. https://doi.org/10.1051/itmconf/20203203002

  • Kasim, S., Xia, L. Y., Wahid, N., Fudzee, M. F. M., Mahdin, H., Ramli, A. A., Suparjoh, S., & Salamat, M. A. (2016). Indoor navigation using a* algorithm. In Recent Advances on Soft Computing and Data Mining: The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18-20, 2016 Proceedings Second (pp. 598-607). Springer International Publishing. https://doi.org/10.1007/978-3-319-51281-5_60

  • Kunhoth, J., Karkar, A. G., Al-Maadeed, S., & Al-Ali, A. (2020). Indoor positioning and wayfinding systems: A survey. Human-centric Computing and Information Sciences, 10(1), 1-41. https://doi.org/10.1186/s13673-020-00222-0

  • Lee, J., Jin, F., Kim, Y., & Lindlbauer, D. (2022). User preference for navigation instructions in mixed reality. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 802-811). IEEE Publishing. https://doi.org/10.1109/VR51125.2022.00102

  • Lee, S., Park, S., Kim, S., Lee, S. H., Lee, S., Member, S., & Park, S. (2017.) Indoor navigation system for evacuation route in case of fire by using environment and location data. In 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan) (pp. 1-2). IEEE Publishing. https://doi.org/10.1016/j.autcon.2016.08.043.P.

  • Li, Y., Gao, Z., He, Z., Zhuang, Y., Radi, A., Chen, R., & El-Sheimy, N. (2019). Wireless fingerprinting uncertainty prediction based on machine learning. Sensors, 19(2), Article 324. https://doi.org/10.3390/s19020324

  • Liang, L., & Tang, R. (2018). An improved collaborative filtering algorithm based on Node2vec. In Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence (pp. 218-222). ACM Publishing. https://doi.org/10.1145/3297156.3297219

  • Liu, B., Ding, L., & Meng, L. (2021). Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation. Cartography and Geographic Information Science, 48(4), 305-319. https://doi.org/10.1080/15230406.2021.1908171

  • Liu, P., Li, Y., Ai, S., Luo, C., & Yang, C. (2022). An improved dijkstra-based algorithm for resource constrained shortest path. In 2022 9th International Conference on Dependable Systems and Their Applications (DSA) (pp. 368-373). IEEE Publishing. https://doi.org/10.1109/DSA56465.2022.00056

  • Liu, S., Ren, Q., Li, J., & Xu, H. (2021). DeepLoc: Deep neural network-based indoor positioning framework. In 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (pp. 1735-1740). IEEE Publishing. https://doi.org/10.1109/hpcc-dss-smartcity-dependsys53884.2021.00255

  • Liu, Z., Li, D., Yang, Y., Chen, X., Lv, X., & Li, X. (2021). Design and implementation of the optimization algorithm in the layout of parking lot guidance. Wireless Communications and Mobile Computing, 2021, 1-6. https://doi.org/10.1155/2021/6639558

  • Liu, Z., Liu, J., Xu, X., & Wu, K. (2022). DeepGPS: Deep learning enhanced GPS positioning in urban canyons. IEEE Transactions on Mobile Computing, 23(1), 376-392. https://doi.org/10.1109/tmc.2022.3208240

  • Malik, R. F., Gustifa, R., Farissi, A., Stiawan, D., Ubaya, H., Ahmad, M. R., & Khirbeet, A. S. (2019). The indoor positioning system using fingerprint method based deep neural network. IOP Conference Series: Earth and Environmental Science, 248, Article 012077. https://doi.org/10.1088/1755-1315/248/1/012077

  • Nessa, A., Adhikari, B., Hussain, F., & Fernando, X. N. (2020). A survey of machine learning for indoor positioning. IEEE Access, 8, 214945-214965. https://doi.org/10.1109/ACCESS.2020.3039271

  • Oh, S. H., & Kim, J. G. (2021). DNN based WiFi positioning in 3GPP indoor office environment. In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 302-306). IEEE. https://doi.org/10.1109/ICAIIC51459.2021.9415207

  • Parimala, M., Broumi, S., Prakash, K., & Topal, S. (2021). Bellman–Ford algorithm for solving shortest path problem of a network under picture fuzzy environment. Complex and Intelligent Systems, 7(5), 2373-2381. https://doi.org/10.1007/s40747-021-00430-w

  • Rachmawati, D., & Gustin, L. (2020). Analysis of Dijkstra’s algorithm and A∗ algorithm in shortest path problem. Journal of Physics: Conference Series, 1566, Article 012061. https://doi.org/10.1088/1742-6596/1566/1/012061

  • Rai, A. (2022). A study on Bellman Ford algorithm for shortest path detection in global positioning system. International Journal for Research in Applied Science and Engineering Technology, 10(5), 2118-2126. https://doi.org/10.22214/ijraset.2022.42720

  • Ramadiani, Bukhori, D., Azainil, & Dengen, N. (2018). Floyd-warshall algorithm to determine the shortest path based on android. IOP Conference Series: Earth and Environmental Science, 144, Article 012019. https://doi.org/10.1088/1755-1315/144/1/012019

  • Real, S., & Araujo, A. (2021). Ves: A mixed-reality development platform of navigation systems for blind and visually impaired. Sensors, 21(18), Article 6275. https://doi.org/10.3390/s21186275

  • Rehman, U., & Cao, S. (2017). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus google glass. IEEE Transactions on Human-Machine Systems, 47(1), 140-151. https://doi.org/10.1109/THMS.2016.2620106

  • Rizi, F. S., Schloetterer, J., & Granitzer, M. (2018). Shortest path distance approximation using deep learning techniques. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1007-1014). IEEE Publishing. https://doi.org/10.1109/asonam.2018.8508763

  • Rochadiani, T. H., Atmojo, W. T., Bari, M., Kristina, E., Renaldi, & Setiawan, A. (2022). Find: Mall navigation using augmented reality. In 2022 8th International Conference on Virtual Reality (ICVR) (pp. 110-115). IEEE Publishing. https://doi.org/10.1109/icvr55215.2022.9847949

  • Rubio-Sandoval, J. I., Martinez-Rodriguez, J. L., Lopez-Arevalo, I., Rios-Alvarado, A. B., Rodriguez-Rodriguez, A. J., & Vargas-Requena, D. T. (2021). An indoor navigation methodology for mobile devices by integrating augmented reality and semantic web. Sensors, 21(16), Article 5435. https://doi.org/10.3390/s21165435

  • Saeliw, A., Hualkasin, W., & Puttinaovarat, S. (2022a). Indoor navigation application in shopping mall based on augmented reality (AR). TEM Journal, 11(3), 1119-1127. https://doi.org/10.18421/TEM113-17

  • Samah, K. A. F. A., Sharip, A. A., Musirin, I., Sabri, N., & Salleh, M. H. (2020). Reliability study on the adaptation of Dijkstra’s algorithm for gateway KLIA2 indoor navigation. Bulletin of Electrical Engineering and Informatics, 9(2), 594-601. https://doi.org/10.11591/eei.v9i2.2081

  • Sarkar, T., Ghosh, A., Chakraborty, S., Singh, L. L., & Chattopadhyay, S. (2021). A new insightful exploration into a low profile ultra-wide-band (UWB) microstrip antenna for DS-UWB applications. Journal of Electromagnetic Waves and Applications, 35(15), 2001-2019. https://doi.org/10.1080/09205071.2021.1927855

  • Shahbazian, R., Macrina, G., Scalzo, E., & Guerriero, F. (2023). Machine learning assists IOT localization: A review of current challenges and future trends. Sensors, 23(7), Article 3551. https://doi.org/10.3390/s23073551

  • Syazwani, C. J. N., Wahab, N. H. A., Sunar, N., Ariffin, S. H. S., Wong, K. Y., & Aun, Y. (2022). Indoor positioning system: A review. International Journal of Advanced Computer Science and Applications, 13(6), 477-490. https://doi.org/10.14569/IJACSA.2022.0130659

  • Tamimi, A. A. (2015). Comparison studies for different shortest path algorithms. International Journal Of Computers & Technology, 14(8), 5979-5986. https://doi.org/10.24297/ijct.v14i8.1857

  • Trybała, P., & Gattner, A. (2021). Development of a building topological model for indoor navigation. IOP Conference Series: Earth and Environmental Science, 684, Article 012031. https://doi.org/10.1088/1755-1315/684/1/012031

  • Varma, P. S., & Anand, V. (2021). Indoor localization for IoT applications: Review, challenges and manual site survey approach. In 2021 IEEE Bombay Section Signature Conference (IBSSC) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/IBSSC53889.2021.9673236

  • Verma, P., Agrawal, K., & Sarasvathi, V. (2020). Indoor navigation using augmented reality. In Proceedings of the 2020 4th International Conference on Virtual and Augmented Reality Simulations (pp. 58-63). ACM Publishing. https://doi.org/10.1145/3385378.3385387

  • Wang, H., Lou, S., Jing, J., Wang, Y., Liu, W., & Liu, T. (2022). The EBS-A* algorithm: An improved A* algorithm for path planning. PLoS ONE, 17(2), Article e0263841. https://doi.org/10.1371/journal.pone.0263841

  • Wang, Y., Li, Z., Gao, J., & Zhao, L. (2020). Deep neural network‐based Wi‐Fi/pedestrian dead reckoning indoor positioning system using adaptive robust factor graph model. IET Radar, Sonar & Navigation, 14(1), 36-47. https://doi.org/10.1049/iet-rsn.2019.0260

  • Woensel, W. Van, Roy, P. C., Sibte, S., Abidi, R., & Raza, S. (2020). Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods. Artificial Intelligence In Medicine, 108, Article 101931. https://doi.org/10.1016/j.artmed.2020.101931

  • Wu, J. H., Huang, C. T., Huang, Z. R., Chen, Y. B., & Chen, S. C. (2020). A rapid deployment indoor positioning architecture based on image recognition. In 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 784-789). IEEE. https://doi.org/10.1109/iciea49774.2020.9102083

  • Yang, G., & Saniie, J. (2017). Indoor navigation for visually impaired using AR markers. In 2017 IEEE International Conference on Electro Information Technology (EIT) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/eit.2017.8053383

  • Yeh, S. C., Hsu, W. H., Lin, W. Y., & Wu, Y. F. (2020). Study on an indoor positioning system using earth’s magnetic field. IEEE Transactions on Instrumentation and Measurement, 69(3), 865-872. https://doi.org/10.1109/TIM.2019.2905750

  • Yoon, J. W., & Lee, S. H. (2023). Development of a construction-site work support system using BIM-marker-based augmented reality. Sustainability, 15(4), Article 3222. https://doi.org/10.3390/su15043222

  • Yu, J., Saad, H. M., & Buehrer, R. M. (2020). Centimeter-level indoor localization using channel state information with recurrent neural networks. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 1317-1323). IEEE Publishing. https://doi.org/10.1109/plans46316.2020.9109805

  • Yuan, J., Chen, R., & Yu, P. (2023). Application of navigation grid corner point algorithm in virtual reality simulation images of indoor fire evacuation. Internet of Things, 22, Article 100716. https://doi.org/10.1016/j.iot.2023.100716

  • Zhou, T., Ku, J., Lian, B., & Zhang, Y. (2022). Indoor positioning algorithm based on improved convolutional neural network. Neural Computing and Applications, 34(9), 6787-6798. https://doi.org/10.1007/s00521-021-06112-5

  • Zlatanova, S., Sithole, G., Nakagawa, M., & Zhu, Q. (2013). Problems in indoor mapping and modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(4W4), 63-68. https://doi.org/10.5194/isprsarchives-XL-4-W4-63-2013

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles