PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (6) Oct. 2023 / JST-4022-2022

 

A Review on Analysis Method of Proximal Hyperspectral Imaging for Studying Plant Traits

Jian Wen Lin, Mohd Shahrimie Mohd Asaari, Haidi Ibrahim, Mohamad Khairi Ishak dan Abdul Sattar Din

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 6, October 2023

DOI: https://doi.org/10.47836/pjst.31.6.11

Keywords: Deep learning, hyperspectral imaging, machine learning, spatial information, spectral information

Published on: 12 October 2023

Understanding the response of plant traits towards different growing conditions is crucial to maximizing crop yield and mitigating the effect of the food crisis. At present, many imaging techniques are being explored and utilized within plant science to solve problems in agriculture. One of the most advanced imaging methods is hyperspectral imaging (HSI), as it carries the spectral and spatial information of a subject. However, in most plant studies that utilized HSI, the focus was given to performing an analysis of spectral information. Even though a satisfactory performance was achieved, there is potential for better performance if spatial information is given more consideration. This review paper (1) discusses the potential of the proximal HSI analysis methods for plant traits studies, (2) presents an overview of the acceptance of hyperspectral imaging technology for plant research, (3) presents the basic workflow of hyperspectral imaging in proximal settings concerning the image acquisition settings, image pre-processing, spectral normalization, and spectral analysis, (4) discusses the analysis methods that utilize spatial information, and (5) addresses some technical challenges related to implementing hyperspectral imaging in proximal settings for plant traits analysis.

  • Arefi, A., Sturm, B., von Gersdorff, G., Nasirahmadi, A., & Hensel, O. (2021). Vis-NIR hyperspectral imaging along with Gaussian process regression to monitor quality attributes of apple slices during drying. LWT, 152, Article 112297. https://doi.org/10.1016/j.lwt.2021.112297

  • Asaari, M. S. M., Mertens, S., Dhondt, S., Inzé, D., & Scheunders, P. (2022). Analysis of plant stress response using hyperspectral imaging and kernel ridge regression. In N. M. Mahyuddin, N. R. M. Noor & H. A. M. Sakim (Eds.), Proceedings of the 11th Internationl Conference on Robotics, Vision, Signal Processing and Power Application (pp. 426-431). Springer. https://doi.org/10.1007/978-981-16-8129-5_66

  • Asaari, M. S. M., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2019). Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture, 162, 749-758. https://doi.org/10.1016/j.compag.2019.05.018

  • Asaari, M. S. M., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121-138. https://doi.org/10.1016/j.isprsjprs.2018.02.003

  • Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture, 75(2), 304-312. https://doi.org/10.1016/j.compag.2010.12.006

  • Behmann, J., Mahlein, A. K., Paulus, S., Dupuis, J., Kuhlmann, H., Oerke, E. C., & Plümer, L. (2016). Generation and application of hyperspectral 3D plant models: Methods and challenges. Machine Vision and Applications, 27(5), 611-624. https://doi.org/10.1007/s00138-015-0716-8

  • Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98-111. https://doi.org/10.1016/j.isprsjprs.2014.03.016

  • Bradley, P. E., Keller, S., & Weinmann, M. (2018). Unsupervised feature selection based on ultrametricity and sparse training data: A case study for the classification of high-dimensional hyperspectral data. Remote Sensing, 10(10), Article 1564. https://doi.org/10.3390/rs10101564

  • Brownson, J. R. S. (2014). Solar Energy Conversion Systems. Elsevier Inc. https://doi.org/https://doi.org/10.1016/C2011-0-07039-4

  • Chen, B., Shi, S., Sun, J., Gong, W., Yang, J., Du, L., Guo, K., Wang, B., & Chen, B. (2019). Hyperspectral lidar point cloud segmentation based on geometric and spectral information. Optics Express, 27(17), 24043-24059. https://doi.org/10.1364/oe.27.024043

  • Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), 409-426. https://doi.org/10.1016/j.isprsjprs.2008.01.001

  • Dinç, S., & Aygün, R. S. (2013). Evaluation of hyperspectral image classification using random forest and Fukunaga-Koontz transform. In P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition (pp. 234-245). Springer. https://doi.org/10.1007/978-3-642-39712-7_18

  • Elmasry, G., Kamruzzaman, M., Sun, D. W., & Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Critical Reviews in Food Science and Nutrition, 52(11), 999-1023. https://doi.org/10.1080/10408398.2010.543495

  • Fischler, M. A., & Bolles, R. C. (1987). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. In M. A. Fischler & O. Firschein (Eds.), Readings in Computer Vision (pp. 726-740). Morgan Kaufmann Publishers, Inc. https://doi.org/10.1016/b978-0-08-051581-6.50070-2

  • Fletcher, R. S., & Turley, R. B. (2017). Employing canopy hyperspectral narrowband data and random forest algorithm to differentiate palmer amaranth from colored cotton. American Journal of Plant Sciences, 08(12), 3258-3271. https://doi.org/10.4236/ajps.2017.812219

  • Fu, Y., Yang, G., Wang, J., Song, X., & Feng, H. (2014). Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Computers and Electronics in Agriculture, 100, 51-59. https://doi.org/10.1016/j.compag.2013.10.010

  • Gao, J., Nuyttens, D., Lootens, P., He, Y., & Pieters, J. G. (2018). Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosystems Engineering, 170, 39-50. https://doi.org/10.1016/j.biosystemseng.2018.03.006

  • Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625-632. https://doi.org/10.1016/j.compag.2016.07.028

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1-17. https://doi.org/10.1016/0003-2670(86)80028-9

  • Gewali, U. B., & Monteiro, S. T. (2016, September 25-28). A novel covariance function for predicting vegetation biochemistry from hyperspectral imagery with Gaussian processes. [Paper presentation]. International Conference on Image Processing (ICIP), Arizona, USA. https://doi.org/10.1109/ICIP.2016.7532752

  • Gewali, U. B., Monteiro, S. T., & Saber, E. (2019). Gaussian processes for vegetation parameter estimation from hyperspectral data with limited ground truth. Remote Sensing, 11(13), Article 1614. https://doi.org/10.3390/rs11131614

  • Goetz, A. F. H. (2009). Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 113(SUPPL. 1), S5-S16. https://doi.org/10.1016/j.rse.2007.12.014

  • Gonzalez, R. C., & Woods, R. E. (1993). Digital Image Processing (3rd ed.). Pearson.

  • Grönwall, C., Steinvall, O., Göhler, B., & Hamoir, D. (2016). Active and passive imaging of clothes in the NIR and SWIR regions for reflectivity analysis. Applied Optics, 55(20), Article 5292. https://doi.org/10.1364/ao.55.005292

  • Guo, Y., Yin, X., Zhao, X., Yang, D., & Bai, Y. (2019). Hyperspectral image classification with SVM and guided filter. Eurasip Journal on Wireless Communications and Networking, 2019(1), 1-9. https://doi.org/10.1186/s13638-019-1346-z

  • Gupta, N., Dahmanja, R., Gottliebb, M., Denes, L., Kaminsky, B., & Metes, P. (1999). Hyperspectral imaging using acousto-optic tunable filters. Proceedings AEROSENSE, 3718, 512-521. https://doi.org/10.1117/12.359988

  • Huang, J. F., & Apan, A. (2006). Detection of sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. Journal of Spatial Science, 51(2), 129-142. https://doi.org/10.1080/14498596.2006.9635087

  • Huang, P., Luo, X., Jin, J., Wang, L., Zhang, L., Liu, J., & Zhang, Z. (2018). Improving high-throughput phenotyping using fusion of close-range hyperspectral camera and low-cost depth sensor. Sensors, 18(8), Article 2711. https://doi.org/10.3390/s18082711

  • Huang, Y., Li, J., Yang, R., Wang, F., Li, Y., Zhang, S., Wan, F., Qiao, X., & Qian, W. (2021). Hyperspectral imaging for identification of an invasive plant mikania micrantha kunth. Frontiers in Plant Science, 12, Article 626516. https://doi.org/10.3389/fpls.2021.626516

  • Ioffe, S., & Szegedy, C. (2015, July 6-11). Batch normalization: Accelerating deep network training by reducing internal covariate shift. [Paper presentation]. 32nd International Conference on Machine Learning (ICML), Lille, France.

  • Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J. M., & Li, X. (2014). Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6298-6314. https://doi.org/10.1109/TGRS.2013.2296031

  • Kool, J., Been, T., & Evenhuis, A. (2021, March 24-26). Detection of latent potato late blight by hyperspectral imaging. [Paper presentation]. 11th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing, Amsterdam, Netherlands. https://doi.org/10.1109/WHISPERS52202.2021.9484002

  • Kuska, M., Wahabzada, M., Leucker, M., Dehne, H. W., Kersting, K., Oerke, E. C., Steiner, U., & Mahlein, A. K. (2015). Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions. Plant Methods, 11(1), Article 28. https://doi.org/10.1186/s13007-015-0073-7

  • Leucker, M., Mahlein, A. K., Steiner, U., & Oerke, E. C. (2016). Improvement of lesion phenotyping in cercospora beticolasugar beet interaction by hyperspectral imaging. Phytopathology, 106(2), 177-184. https://doi.org/10.1094/PHYTO-04-15-0100-R

  • Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors, 14(11), 20078-20111. https://doi.org/10.3390/s141120078

  • Liao, W., Ochoa, D., Gao, L., Zhang, B., & Philips, W. (2019, July 29- August 2). Morphological analysis for banana disease detection in close range hyperspectral remote sensing images. [Paper presentation]. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Yokohama, Japan. https://doi.org/10.1109/IGARSS.2019.8899087

  • Liu, Z. Y., Huang, J. F., Shi, J. J., Tao, R. X., Zhou, W., & Zhang, L. L. (2007). Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression. Journal of Zhejiang University Science B, 8(10), 738-744. https://doi.org/10.1631/jzus.2007.B0738

  • Lu, B., Dao, P. D., Liu, J., He, Y., & Shang, J. (2020). Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing, 12(16), 1-44. https://doi.org/10.3390/RS12162659

  • Luo, G., Chen, G., Tian, L., Qin, K., & Qian, S. E. (2016). Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Canadian Journal of Remote Sensing, 42(2), 106-116. https://doi.org/10.1080/07038992.2016.1160772

  • Mahlein, A. K., Steiner, U., Dehne, H. W., & Oerke, E. C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11(4), 413-431. https://doi.org/10.1007/s11119-010-9180-7

  • Manley, M., Williams, P., Nilsson, D., & Geladi, P. (2009). Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) Kernels. Journal of Agricultural and Food Chemistry, 57(19), 8761-8769. https://doi.org/10.1021/jf9018323

  • Mateo-García, G., Laparra, V., & Gómez-Chova, L. (2018, July 22-27). Optimizing kernel ridge regression for remote sensing problems. [Paper presentation]. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Velencia, Spain. https://doi.org/10.1109/IGARSS.2018.8518016

  • Mishra, P., Lohumi, S., Ahmad Khan, H., & Nordon, A. (2020). Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Computers and Electronics in Agriculture, 178, Article 105780. https://doi.org/10.1016/j.compag.2020.105780

  • Mishra, P., Polder, G., Gowen, A., Rutledge, D. N., & Roger, J. M. (2020). Utilising variable sorting for normalisation to correct illumination effects in close-range spectral images of potato plants. Biosystems Engineering, 197, 318-323. https://doi.org/10.1016/j.biosystemseng.2020.07.010

  • Moshou, D., Pantazi, X. E., Kateris, D., & Gravalos, I. (2014). Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosystems Engineering, 117(1), 15–22. https://doi.org/10.1016/j.biosystemseng.2013.07.008

  • Moughal, T. A. (2013). Hyperspectral image classification using support vector machine. Journal of Physics: Conference Series, 439(1), Article 012042. https://doi.org/10.1088/1742-6596/439/1/012042

  • Nagasubramanian, K., Jones, S., Singh, A. K., Sarkar, S., Singh, A., & Ganapathysubramanian, B. (2019). Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods, 15(1), 1-10. https://doi.org/10.1186/s13007-019-0479-8

  • Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors, 21(3), Article 742. https://doi.org/10.3390/s21030742

  • Nguyen, H. T., & Lee, B. (2006). Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy, 24(4), 349-356. https://doi.org/10.1016/j.eja.2006.01.001

  • Nielsen, A. A. (2011). Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Transactions on Image Processing, 20(3), 612-624. https://doi.org/10.1109/TIP.2010.2076296

  • Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 8(1348), 1-12. https://doi.org/10.3389/fpls.2017.01348

  • Paoletti, M. E., Haut, J. M., Plaza, J., & Plaza, A. (2018). A new deep convolutional neural network for fast hyperspectral image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 145(Part A), 120-147. https://doi.org/10.1016/j.isprsjprs.2017.11.021

  • Paulus, S., & Mahlein, A. K. (2020). Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale. GigaScience, 9(8), 1-10. https://doi.org/10.1093/gigascience/giaa090

  • Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93(2), 183-191. https://doi.org/10.1016/j.jfoodeng.2009.01.014

  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS One, 8(6), Article e66428. https://doi.org/10.1371/journal.pone.0066428

  • Ren, G., Wang, Y., Ning, J., & Zhang, Z. (2020). Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 237, Article 118407. https://doi.org/10.1016/j.saa.2020.118407

  • Rodarmel, C., & Shan, J. (2002). Principal component analysis for hyperspectral image classification. Surveying and Land Information Science, 62(2), 115-122.

  • Romer, C., Wahabzada M., Ballvora A., Pinto, F., Rossini, M., Panigada, C., Behmann, J., Leon, J., Thurau, C., Bauckhage, C., Kersting, K., Rascher, U., & Plumer, L. (2012). Early drought stress detection in cereals: Simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology, 39(11), 878-890. https://doi.org/10.1071/FP12060

  • Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., & Plümer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74(1), 91-99. https://doi.org/10.1016/j.compag.2010.06.009

  • Sabzi, S., Pourdarbani, R., Rohban, M. H., García-Mateos, G., Paliwal, J., & Molina-Martínez, J. M. (2021). Early detection of excess nitrogen consumption in cucumber plants using hyperspectral imaging based on hybrid neural networks and the imperialist competitive algorithm. Agronomy, 11(3), Article 575. https://doi.org/10.3390/agronomy11030575

  • Saha, D., & Manickavasagan, A. (2021). Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Current Research in Food Science, 4, 28-44. https://doi.org/10.1016/j.crfs.2021.01.002

  • Salazar-vazquez, J., & Mendez-vazquez, A. (2020). HardwareX A plug-and-play Hyperspectral Imaging Sensor using low-cost equipment. HardwareX, 7, Article e00087. https://doi.org/10.1016/j.ohx.2019.e00087

  • Sankaran, S., Ehsani, R., Inch, S. A., & Ploetz, R. C. (2012). Evaluation of visible-near infrared reflectance spectra of avocado leaves as a non-destructive sensing tool for detection of laurel wilt. Plant Disease, 96(11), 1683-1689. https://doi.org/10.1094/PDIS-01-12-0030-RE

  • Schlerf, M., Atzberger, C., Udelhoven, T., Jarmer, T., Mader, S., Werner, W., & Hill, J. (2003, May 13-16). Spectrometric estimation of leaf pigments in Norway spruce needles using band-depth analysis, partial least-square regression and inversion of a conifer leaf model. [Paper presentation]. 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, Germany.

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2-3), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X

  • Sims, D. A., & Gamon, J. A. (2003). Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sensing of Environment, 84(4), 526-537. https://doi.org/10.1016/S0034-4257(02)00151-7

  • Stuart, M. B., McGonigle, A. J. S., & Willmott, J. R. (2019). Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors, 19(14), Article 3071. https://doi.org/10.3390/s19143071

  • Sun, G., Ding, Y., Wang, X., Lu, W., Sun, Y., & Yu, H. (2019). Nondestructive determination of nitrogen, phosphorus and potassium contents in greenhouse tomato plants based on multispectral three-dimensional imaging. Sensors, 19(23), Article 5295. https://doi.org/10.3390/s19235295

  • Sun, H., Liu, N., Wu, L., Chen, L., Yang, L., Li, M., & Zhang, Q. (2018). Water content detection of potato leaves based on hyperspectral image. IFAC-PapersOnLine, 51(17), 443-448. https://doi.org/10.1016/j.ifacol.2018.08.179

  • Sun, J., Yang, W., Zhang, M., Feng, M., Xiao, L., & Ding, G. (2021). Estimation of water content in corn leaves using hyperspectral data based on fractional order Savitzky-Golay derivation coupled with wavelength selection. Computers and Electronics in Agriculture, 182, Article 105989. https://doi.org/10.1016/j.compag.2021.105989

  • Tian, Y., & Zhang, L. (2012). Study on the methods of detecting cucumber downy mildew using hyperspectral imaging technology. Physics Procedia, 33, 743-750. https://doi.org/10.1016/j.phpro.2012.05.130

  • Vigneau, N., Ecarnot, M., Rabatel, G., & Roumet, P. (2011). Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Research, 122(1), 25-31. https://doi.org/10.1016/j.fcr.2011.02.003

  • Villegas, G., Liao, W., Criollo, R., Philips, W., & Ochoa, D. (2017). Detection of leaf structures in close-range hyperspectral images using morphological fusion. Geo-Spatial Information Science, 20(4), 325-332. https://doi.org/10.1080/10095020.2017.1399673

  • Wang, H., Chen, J., Lin, H., & Yuan, D. (2010). Research on effectiveness of hyperspectral data on identifying rice of different genotypes. Remote Sensing Letters, 1(4), 223-229. https://doi.org/10.1080/01431161.2010.481680

  • Wang, X., Zhang, Y., Ma, X., Xu, T., & Arce, G. R. (2018). Compressive spectral imaging system based on liquid crystal tunable filter. Optics Express, 26(19), Article 25226. https://doi.org/10.1364/oe.26.025226

  • Wang, Z., Hu, M., & Zhai, G. (2018). Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors, 18(4), Article 1126. https://doi.org/10.3390/s18041126

  • Williams, D., Britten, A., McCallum, S., Jones, H., Aitkenhead, M., Karley, A., Loades, K., Prashar, A., & Graham, J. (2017). A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions. Plant Methods, 13(1), 1-12. https://doi.org/10.1186/s13007-017-0226-y

  • Yan, T., Xu, W., Lin, J., Duan, L., Gao, P., Zhang, C., & Lv, X. (2021). Combining multi-dimensional Convolutional Neural Network (CNN) with visualization method for detection of aphis gossypii glover infection in cotton leaves using hyperspectral imaging. Frontiers in Plant Science, 12, Article 604510. https://doi.org/10.3389/fpls.2021.604510

  • Yang, W., Yang, C., Hao, Z., Xie, C., & Li, M. (2019). Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network. IEEE Access, 7, 118239-118248. https://doi.org/10.1109/ACCESS.2019.2936892

  • Yuan, L., Huang, Y., Loraamm, R. W., Nie, C., Wang, J., & Zhang, J. (2014). Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research, 156, 199-207. https://doi.org/10.1016/j.fcr.2013.11.012

  • Zhang, F., & Zhou, G. (2019). Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecology, 19(1), 1-12. https://doi.org/10.1186/s12898-019-0233-0

  • Zhang, J. C., Pu, R. L., Wang, J. H., Huang, W. J., Yuan, L., & Luo, J. H. (2012). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture, 85, 13-23. https://doi.org/10.1016/j.compag.2012.03.006

  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., … & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326-9331. https://doi.org/10.1073/pnas.1701762114

  • Zhao, J., Pn, F., Li, Z., Lan, Y., Lu, L., Yang, D., & Wen, Y. (2021). Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network. International Journal of Agricultural and Biological Engineering, 14(2), 167-174. https://doi.org/10.25165/J.IJABE.20211402.6023