e-ISSN 2231-8542
ISSN 1511-3701
Amr Abdullah Munshi, Wesam Hasan AlSabban, Abdullah Tarek Farag, Omar Essam Rakha, Ahmad Al Sallab and Majid Alotaibi
Pertanika Journal of Tropical Agricultural Science, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.16
Keywords: Artificial intelligence, Islamic fatwa, machine learning, natural language processing, question answering, text classification
Published on: 1 April 2022
Islam is the second-largest and fastest-growing religion. The Islamic Law, Sharia, represents a profound component of the day-to-day lives of Muslims. While sources of Sharia are available for anyone, it often requires a highly qualified person, the Mufti, to provide Fatwa. With Islam followers representing almost 25% of the planet earth population, generating many queries, and the sophistication of the Mufti qualification process, creating a shortage in them, we have a supply-demand problem, calling for Automation solutions. This scenario motivates the application of Artificial Intelligence (AI) to Automated Islamic Fatwa in a scalable way that can adapt to various sources like social media. In this work, the potential of AI, Machine Learning, and Deep Learning, with technologies like Natural Language Processing (NLP), paving the way to help the Automation of Islam Fatwa are explored. The work started by surveying the State-of-The-Art (SoTA) of NLP and exploring the potential use-cases to solve the problems of Question answering and Text Classification in the Islamic Fatwa Automation. The first and major enabler component for AI application for Islamic Fatwa, the data were presented by building the largest dataset for Islamic Fatwa, spanning the widely used websites for Fatwa. Moreover, the baseline systems for Topic Classification, Topic Modeling, and Retrieval-based Question-Answering are presented to set the future research and benchmark on the dataset. Finally, the dataset is released and baselines to the public domain to help advance future research in the area.
Abdi, A., Hasan, S., Arshi, M., Shamsuddin, S. M., & Idris, N. (2020). A question answering system in hadith using linguistic knowledge. Computer Speech & Language, 60, Article 101023. https://doi.org/10.1016/j.csl.2019.101023
Al Sallab, A. A., Baly, R., Badaro, G., Hajj, H. M., El-Hajj, W., & Shaban, K. (2015a, March 9-10). Towards deep learning models for sentiment analysis in Arabic. In Machine Learning and Data Analytics Symposium - MLDAS 2015 (pp. 1-5). Doha, Qatar. https://doi.org/10.18653/v1/W15-3202
Al Sallab, A., Hajj, H., Badaro, G., Baly, R., El-Hajj, W., & Shaban, K. (2015b, July 26-31). Deep learning models for sentiment analysis in Arabic. In Proceedings of the Second Workshop on Arabic Natural Language Processing (pp. 9-17). Beijing, China. https://doi.org/10.18653/v1/W15-3202
Al Sallab, A., Rashwan, M., Raafat, H., & Rafea, A. (2014, October 25). Automatic Arabic diacritics restoration based on deep nets. In Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP) (pp. 65-72). Doha, Qatar. https://doi.org/10.3115/v1/W14-3608
Al-Sallab, A., Baly, R., Hajj, H., Shaban, K. B., El-Hajj, W., & Badaro, G. (2017). Aroma: A recursive deep learning model for opinion mining in arabic as a low resource language. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 16(4), 1-20. https://doi.org/10.1145/3086575
Antoun, W., Baly, F., & Hajj, H. (2020). Arabert: Transformer-based model for arabic language understanding. arXiv Preprint.
Athiwaratkun, B., Wilson, A. G., & Anandkumar, A. (2018). Probabilistic fasttext for multi-sense word embeddings. arXiv Preprint. https://doi.org/10.18653/v1/P18-1001
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv Preprint.
Baly, R., Badaro, G., Hamdi, A., Moukalled, R., Aoun, R., El-Khoury, G., El-Sallab, A., Hajj, H., Habash, N., Shaban, K. B., & El-Hajj, W. (2017). Omam at semeval-2017 task 4: Evaluation of English state-of-the-art sentiment analysis models for Arabic and a new topic-based model. In Proceedings of the 11th International Workshop on Semantic Evaluation (SEMEVAL-2017) (pp. 603-610). ACM Publishing. https://doi.org/10.18653/v1/S17-2099
Baly, R., Hobeica, R., Hajj, H., El-Hajj, W., Shaban, K. B., & Al-Sallab, A. (2016). A meta-framework for modeling the human reading process in sentiment analysis. ACM Transactions on Information Systems (TOIS), 35(1), 1-21. https://doi.org/10.1145/2950050
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … & Amodei, D. (2020). Language models are few-shot learners. arXiv Preprint.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv Preprint.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Preprint.
Djandji, M., Baly, F., Antoun, W., & Hajj, H. (2020). Multi-task learning using AraBert for offensive language detection. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection (pp. 97-101). European Language Resource Association.
Essam, O. (2017). Arabic AskFM dataset. Data Science.
Hamoud, B., & Atwell, E. (2016). Quran question and answer corpus for data mining with WEKA. In 2016 Conference of Basic Sciences and Engineering Studies (SGCAC) (pp. 211-216). IEEE Publishing. https://doi.org/10.1109/SGCAC.2016.7458032
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv Preprint. https://doi.org/10.18653/v1/P18-1031
Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv Preprint. https://doi.org/10.18653/v1/D15-1166
Magooda, A., Sayed, A. M., Mahgoub, A. Y., Ahmed, H., Rashwan, M., Raafat, H., Kamal, E., & & Al Sallab, A. A. (2016). RDI_Team at SemEval-2016 Task 3: RDI unsupervised framework for text ranking. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) (pp. 822-827). ACM Publishing. https://doi.org/10.18653/v1/S16-1127
Nada, A. M. A., Alajrami, E., Al-Saqqa, A. A., & Abu-Naser, S. S. (2020). Arabic text summarization using AraBERT model using extractive text summarization approach. International Journal of Academis Information Systems Research, 4(8), 6-9.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv Preprint. https://doi.org/10.18653/v1/N18-1202
Rashwan, M. A., Al Sallab, A. A., Raafat, H. M., & Rafea, A. (2015). Deep learning framework with confused sub-set resolution architecture for automatic Arabic diacritization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3), 505-516. https://doi.org/10.1109/TASLP.2015.2395255
Sihotang, M. T., Jaya, I., Hizriadi, A., & Hardi, S. M. (2020). Answering Islamic questions with a chatbot using fuzzy string-matching algorithm. In Journal of Physics: Conference Series (Vol. 1566, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1742-6596/1566/1/012007
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In 31st Conference on Neural Information Processing Systems (NIPS 2017) (pp. 5998-6008). Long Beach, USA.
ISSN 1511-3701
e-ISSN 2231-8542