PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 46 (4) Nov. 2023 / JTAS-2714-2023

 

Determination of Pneumococcal Serotypes by Sequetyping and Sequential Conventional Multiplex PCR in the Vaccine Era

Nurul Asyikin Abdul Rahman, Mohd Nasir Mohd Desa, Siti Norbaya Masri, Niazlin Mohd Taib, Nurshahira Sulaiman, Nurul Diana Dzaraly and Hazmin Hazman

Pertanika Journal of Science & Technology, Volume 46, Issue 4, November 2023

DOI: https://doi.org/10.47836/pjtas.46.4.10

Keywords: Sequential conventional multiplex PCR, sequetyping, serotyping, Streptococcus pneumoniae

Published on: 27 November 2023

Pneumococcal serotyping is required for epidemiological surveillance to guide vaccination strategy. DNA-based approaches are more affordable, but the combination of sequetyping and sequential conventional multiplex polymerase chain reaction (cmPCR) may complement one another. A total of 101 isolates were subjected to sequetyping and sequential cmPCR following previously published protocols, and the outputs were compared. The sequetyping method determined up to the serotype level for 99 isolates (98%). On the other hand, the sequential cmPCR technique identified 91 isolates (90.1%), with 63 of them (62.4%) up to the serotype level. Sequetyping generated discrete serotypes for 6A/B, 11A/D, 15A/F, and 15B/C as 6A (n = 11), 6B (n = 10), 11A (n = 5), 15C (n = 1), and 15A (n = 1). In conclusion, the cpsB gene sequetyping method produced a comparable output with sequential cmPCR, further discriminating some sub-serogroups among the isolate collection.

  • Batt, S. L., Charalambous, B. M., McHugh, T. D., Martin, S., & Gillespie, S. H. (2005). Novel PCR-restriction fragment length polymorphism method for determining serotypes or serogroups of Streptococcus pneumoniae isolates. Journal of Clinical Microbiology, 43(6), 2656–2661. https://doi.org/10.1128/JCM.43.6.2656-2661.2005

  • Centers for Disease Control and Prevention. (2021). PCR-based methods for identification of S. pneumoniae serotypes/serogroups. CDC. https://www.cdc.gov/streplab/pneumococcus/resources.html

  • Daningrat, W. O. D., Amalia, H., Ayu, I. M., Satzke, C., & Safari, D. (2022). Carriage of Streptococcus pneumoniae in children under five years of age prior to pneumococcal vaccine introduction in Southeast Asia: A systematic review and meta-analysis (2001–2019). Journal of Microbiology, Immunology and Infection, 55(1), 6–17. https://doi.org/10.1016/j.jmii.2021.08.002

  • Dzaraly, N. D., Mohd Desa, M. N., Muthanna, A. R., Masri, S. N., Taib, N. M., Suhaili, Z., Sulaiman, N., Baharin, N. H. Z., Shuan, C. Y., Ariffin, Z., Rahman, N. I. A., Mohd Rani, F., Palanisamy, N. K., Soh, T. S. T., & Abdullah, F. H. (2021). Antimicrobial susceptibility, serotype distribution, virulence profile and molecular typing of piliated clinical isolates of pneumococci from east coast, Peninsular Malaysia. Scientific Reports, 11, 8220. https://doi.org/10.1038/s41598-021-87428-z

  • Ganaie, F., Maruhn, K., Li, C., Porambo, R. J., Elverdal, P. L., Abeygunwardana, C., van der Linden, M., Duus, J. Ø., Sheppard, C. L., & Nahm, M. H. (2021). Structural, genetic, and serological elucidation of Streptococcus pneumoniae serogroup 24 serotypes: Discovery of a new serotype, 24C, with a variable capsule structure. Journal of Clinical Microbiology, 59(7), e00540-21. https://doi.org/10.1128/JCM.00540-21

  • Ganaie, F., Saad, J. S., McGee, L., van Tonder, A. J., Bentley, S. D., Lo, S. W., Gladstone, R. A., Turner, P., Keenan, J. D., Breiman, R. F., & Nahm, M. H. (2020). A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral streptococcus. mBio, 11(3), e00937-20. https://doi.org/10.1128/mBio.00937-20

  • Jauneikaite, E., Jefferies, J. M., Hibberd, M. L., & Clarke, S. C. (2012). Prevalence of Streptococcus pneumoniae serotypes causing invasive and non-invasive disease in South East Asia: A review. Vaccine, 30(24), 3503–3514. https://doi.org/10.1016/j.vaccine.2012.03.066

  • Jin, P., Wu, L., Oftadeh, S., Kudinha, T., Kong, F., & Zeng, Q. (2016). Using a practical molecular capsular serotype prediction strategy to investigate Streptococcus pneumoniae serotype distribution and antimicrobial resistance in Chinese local hospitalized children. BMC Pediatrics, 16, 53. https://doi.org/10.1186/s12887-016-0589-7

  • Jin, P., Xiao, M., Kong, F., Oftadeh, S., Zhou, F., Liu, C., & Gilbert, G. L. (2009). Simple, accurate, serotype-specific PCR assay to differentiate Streptococcus pneumoniae serotypes 6A, 6B, and 6C. Journal of Clinical Microbiology, 47(8), 2470–2474. https://doi.org/10.1128/JCM.00484-09

  • Lawrence, E. R., Arias, C. A., Duke, B., Beste, D., Broughton, K., Efstratiou, A., George, R. C., & Hall, L. M. C. (2000). Evaluation of serotype prediction by cpsA-cpsB gene polymorphism in Streptococcus pneumoniae. Journal of Clinical Microbiology, 38(4), 1319–1323. https://doi.org/10.1128/jcm.38.4.1319-1323.2000

  • Leung, M. H., Bryson, K., Freystatter, K., Pichon, B., Edwards, G., Charalambous, B. M., & Gillespie, S. H. (2012). Sequetyping: Serotyping Streptococcus pneumoniae by a single PCR sequencing strategy. Journal of Clinical Microbiology, 50(7), 2419–2427. https://doi.org/10.1128/JCM.06384-11

  • Løchen, A., Croucher, N. J., & Anderson, R. M. (2020). Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Scientific Reports, 10, 18977. https://doi.org/10.1038/s41598-020-75691-5

  • Mauffrey, F., Fournier, É., Demczuk, W., Martin, I., Mulvey, M., Martineau, C., Lévesque, S., Bekal, S., Domingo, M.-C. C., Doualla-Bell, F., Longtin, J., & Lefebvre, B. (2017). Comparison of sequential multiplex PCR, sequetyping and whole genome sequencing for serotyping of Streptococcus pneumoniae. PLOS One, 12(12), e0189163. https://doi.org/10.1371/journal.pone.0189163

  • Pai, R., Limor, J., & Beall, B. (2005). Use of pyrosequencing to differentiate Streptococcus pneumoniae serotypes 6A and 6B. Journal of Clinical Microbiology, 43(9), 4820–4822. https://doi.org/10.1128/JCM.43.9.4820-4822.2005

  • Park, D., Kim, S. H., Bae, I. K., Kim, N. Y., Kook, J.-K., Park, Y.-H., & Shin, J. H. (2019). Evaluation of modified sequential multiplex PCR for Streptococcus pneumoniae serotyping. Japanese Journal of Infectious Diseases, 72(4), 224–227. https://doi.org/10.7883/yoken.JJID.2018.422

  • Richter, S. S., Heilmann, K. P., Dohrn, C. L., Riahi, F., Diekema, D. J., & Doern, G. V. (2013). Evaluation of pneumococcal serotyping by multiplex PCR and quellung reactions. Journal of Clinical Microbiology, 51(12), 4193–4195. https://doi.org/10.1128/JCM.01876-13

  • Seki, M., Yamashita, Y., Torigoe, H., Tsuda, H., Sato, S., & Maeno, M. (2005). Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae. Journal of Clinical Microbiology, 43(4), 1581-1586. https://doi.org/10.1128/jcm.43.4.1581-1586.2005

  • Shakrin, N. N. S. M., Balasubramaniam, S. D., Yusof, H. A., Mastuki, M. F., Masri, S. N., Taib, N. M., Nordin, S. A., Jamal, F., Clarke, S. C., & Desa, M. N. M. (2013). Evaluation of PCR-based approach for serotype determination of Streptococcus pneumoniae. Tropical Biomedicine, 30(2), 338–344.

  • Shakrin, N. N. S. M., Masri, S. N., Taib, N. M., Nordin, S. A., Jamal, F., & Desa, M. N. M. (2014). Genotypic characterization of Malaysian human isolates of Streptococcus pneumoniae from carriage and clinical sources. Comparative Immunology, Microbiology and Infectious Diseases, 37(5–6), 347–354. https://doi.org/10.1016/j.cimid.2014.10.005

  • Sheppard, C. L., Harrison, T. G., Morris, R., Hogan, A., & George, R. C. (2004). Autolysin-targeted LightCycler assay including internal process control for detection of Streptococcus pneumoniae DNA in clinical samples. Journal of Medical Microbiology, 53(3), 189–195. https://doi.org/10.1099/jmm.0.05460-0

  • Swarthout, T. D., Gori, A., Bar-Zeev, N., Kamng’ona, A. W., Mwalukomo, T. S., Bonomali, F., Nyirenda, R., Brown, C., Msefula, J., Everett, D., Mwansambo, C., Gould, K., Hinds, J., Heyderman, R. S., & French, N. (2021). Evaluation of pneumococcal serotyping of nasopharyngeal-carriage isolates by latex agglutination, whole-genome sequencing (PneumoCaT), and DNA microarray in a high-pneumococcal-carriage-prevalence population in Malawi. Journal of Clinical Microbiology, 59(1), e02103-20. https://doi.org/10.1128/JCM.02103-20

  • Wahl, B., O’Brien, K. L., Greenbaum, A., Majumder, A., Liu, L., Chu, Y., Lukšić, I., Nair, H., McAllister, D. A., Campbell, H., Rudan, I., Black, R., & Knoll, M. D. (2018). Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: Global, regional, and national estimates for 2000–15. The Lancet Global Health, 6(7), e744–e757. https://doi.org/10.1016/S2214-109X(18)30247-X

  • Zhou, M.-L., Wang, Z.-R., Li, Y.-B., Kudinha, T., Wang, J., Wang, Y., Xiao, M., Xu, Y.-C., Liu, Z.-Y., & Hsueh, P.-R. (2022). Rapid identification of Streptococcus pneumoniae serotypes by cpsB gene-based sequetyping combined with multiplex PCR. Journal of Microbiology, Immunology and Infection, 55(5), 870–879. https://doi.org/10.1016/j.jmii.2021.11.004