PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 46 (3) Aug. 2023 / JTAS-2658-2022

 

The Effect of Different Lignocellulose Biomass-based Substrates on the Enhancement of Growth, Yield, and Nutritional Composition of Grey Oyster Mushrooms

Noor Hafizoh Saidan, Mohd Shahrul Ridzuan Hamil, Khomaizon Abdul Kadir Pahirul Zaman, Nik Nur Azwanida Zakaria, Norsyafiera Syuhada Fadzil and Kharul Azmi Mu’azzam Abdul Rahman

Pertanika Journal of Science & Technology, Volume 46, Issue 3, August 2023

DOI: https://doi.org/10.47836/pjtas.46.3.04

Keywords: Cassava peel, Pleurotus ostreatus, sawdust, sugarcane bagasse

Published on: 30 August 2023

The local agricultural industry has produced a lot of biomass waste from agro-based materials, which contain much lignocellulose that can be used as substrates for oyster mushrooms (Pleurotus ostreatus) cultivation. This study aims to compare the effect of different lignocellulose biomass-based substrates on oyster mushrooms’ growth, yield, and nutritional composition. Three different substrates (cassava peel, sugarcane bagasse, and sawdust) were prepared, and the growth response was observed and measured. The fastest mycelial colonization was achieved from sugarcane bagasse after 29 days of cultivation. Oyster mushrooms grown with sugarcane bagasse substrate showed the highest carbohydrate, fiber, and energy content with 10.70%, 7.70%, and 52.00 kcal, respectively, compared to mushrooms grown with other substrates. The biological efficiency of sugarcane bagasse is also comparable to sawdust. Thus, it can be concluded that sugarcane bagasse has a high potential to be used as an alternative biomass-based substrate for cultivating P. ostreatus with enhancement on the growth, yield, and nutritional composition.

  • Ahmed, S. (1998). Performance of different substrates on the growth and yield of oyster mushroom Pleurotus sajorcaju (Fr.) Sing. [Unpublished Master’s Thesis]. Bangabandhu Sheikh Mujibur Rahman Agricultural University.

  • Ahmed, S. A., Kadam, J. A., Mane, V. P., Patil, S. S., & Baig, M. M. V. (2009). Biological efficiency and nutritional contents of Pleurotus florida (Mont.) Singer cultivated on different agro-wastes. Nature and Science, 7(1), 44-48.

  • Alam, N., Khan, A., Hossain, M., Amin, S. R., & Khan, L. A. (2007). Nutritional analysis of dietary mushroom Pleurotus florida Eger and Pleurotus sajor-caju (Fr.) Singer. Bangladesh Journal of Mushroom, 1(2), 1-7.

  • Amin, M. Z. M., Harun, A., & Wahab, M. A. M. A. (2014). Status and potential of mushroom industry in Malaysia. Economic and Technology Management Review, 9(2014), 103-111.

  • AOAC International. (2005). AOAC Official Method 991.43: Total, soluble, and insoluble dietary fiber in foods. AOAC International.

  • Baah, J., Tait, R. M., & Tuah, A. K. (2011). Selecting browse plants to supplement cassava peel-based diet for peri-urban small ruminants. Small Ruminant Research, 96(1), 36-40. https://doi.org/10.1016/j.smallrumres.2010.11.006

  • Baysal, E., Peker, H., Yalinkiliç, M. K., & Temiz, A. (2003). Cultivation of oyster mushroom on waste paper with some added supplementary materials. Bioresource Technology, 89(1), 95-97. https://doi.org/10.1016/s0960-8524(03)00028-2

  • Betancur, G. J. V., & Pereira, Jr. N. (2010). Sugarcane bagasse as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization. Electronic Journal of Biotechnology, 13(3), 1–9. https://doi.org/10.2225/vol13-issue3-fulltext-3

  • Burns, A. E., Gleadow, R. M., Zacarias, A. M., Cuambe, C. E., Miller, R. E., & Cavagnaro, T. R. (2012). Variations in the chemical composition of cassava (Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. Journal of Agricultural and Food Chemistry, 60(19), 4946-4956. https://doi.org/10.1021/jf2047288

  • Chukwurah, N. F., Eze, S. C., Chiejina, N. V., Onyeonagu, C. C., Okezie, C. E. A., Ugwuoke, K., Ugwu, F. S. O., Aruah, C. B., Akobueze, E. U., & Nkwonta, C. G. (2013).

  • Correlation of stipe length, pileus width and stipe girthof oyster mushroom (Pleurotus ostreatus) grown indifferent farm substrates. Journal of Agricultural Biotechnology and Sustainable Development, 5(3), 54-60. https://doi.org/10.5897/jabsd12.20

  • Deepalakshmi, K., & Sankaran, M. (2014). Pleurotus ostreatus: An oyster mushroom with nutritional and medicinal properties. Journal of Biochemical Technology, 5(2), 718-726.

  • Devi, K. S. P., Roy, B., Patra, P., Sahoo, B., Islam, S. S., & Maiti, T. K. (2013). Characterization and lectin microarray of an immunomodulatory heteroglucan from Pleurotus ostreatus mycelia. Carbohydrate Polymers, 94(2), 857-865. https://doi.10.1016/j.carbpol.2013.02.017

  • Dias, M. O. S., Ensinas, A. V., Nebra, S. A., Maciel Filho, R., Rossell, C. E. V., & Maciel, M. R. W. (2009). Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chemical Engineering Research and Design, 87(9), 1206–1216. https://doi.org/10.1016/j.cherd.2009.06.020

  • Elsisura, I. B., Amor, M., & Figueroa, G. (2022). Growth and yield performance of oyster mushroom cultivated in combined cassava peels, coconut residue and coffee waste substrates. American Journal of Environment and Climate, 1(1), 1-11. https://doi.org/10.54536/ajec.v1i1.206

  • Ezekiel, O.O., Aworh, O.C., Blaschek, H.P., & Ezeji, T.C. (2010). Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). African Journal of Biotechnology, 9(12), 187-194.

  • Fasehah, S. N., & Shah, A. (2017). Effect of using various substrates on cultivation of Pleurotus sajor-caju. Journal of Engineering Science and Technology, 12(4), 1104-1110.

  • Ghaly, I. S., Ahmed, E. S., Booles, H. F., Farag, I. M., & Nada, S. A. (2011). Evaluation of antihyperglycemic action of oyster mushroom (Pleurotus ostreatus) and its effect on DNA damage, chromosome aberrations and sperm abnormalities in streptozotocin-induced diabetic rats. Global Veterinaria, 7(6), 532-544.

  • Girmay, Z., Gorems, W., Birhanu, G., & Solomon, Z. (2016). Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express, 6, 87. https://doi.org/10.1186/s13568-016-0265-1

  • Grimm, D., & Wösten, H. A. B. (2018). Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology, 102, 7795-7803. https://doi.org/10.1007/s00253-018-9226-8

  • Gunde-Cimerman, N., & Cinerman, A. (1995). Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase-lovastatin. Experimental Mycology, 19(1), 1-6. https://doi.org/10.1006/emyc.1995.1001

  • Hoa, H. T., Wang, C. L., & Wang, C. H. (2018). The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(4), 423-434. https://doi.org/10.5941/myco.2015.43.4.423

  • Jonathan, S. G., Fasidi, I. O., Ajayi, A. O., & Adegeye, O. (2008). Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer. Bioresource Technology, 99(4), 807-811. https://doi.org/10.1016/j.biortech.2007.01.005

  • Kalac, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209-218. https://doi:10.1002/jsfa.5960

  • Khan, M. A., Amin, S. R., Uddin, M. N., Tania, M., & Alam, N. (2008). Comparative study of the nutritional composition of oyster mushrooms cultivated in Bangladesh. Bangladesh Journal of Mushroom, 2(1), 9-14.

  • Kortei, N. K., Dzogbefia, V. P., & Obodai, M. (2014). Assessing the effect of composting cassava peel based substrates on the yield, nutritional quality, and physical characteristics of Pleurotus ostreatus (Jacq. ex Fr.) Kummer. Biotechnology Research International, 2014, 571520. https://doi.org.10.1155/2014/571520

  • Kumla, J., Suwannarach, N., Sujarit, K., Penkhrue, W., Kakumyan, P., Jatuwong, K., Vadthanarat, S., and Lumyong, S. (2020). Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules, 25(12), 2811-2852. https://doi: 10.3390/molecules25122811

  • Liang, C. H., Wu, C. Y., Lu, P. L., Kuo, Y. C., & Liang, Z. C. (2019). Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi Journal of Biological Sciences, 26(2), 263-269. https://doi.org/10.1016/j.sjbs.2016.10.017

  • Liang, Z. C., Wu, K. J., Wang, J. C., Lin, C. H., & Wu, C. Y. (2011). Cultivation of the culinary-medicinal lung oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. (Agaricomycetideae) on grass plants in Taiwan. International Journal of Medicinal Mushrooms, 13(2), 193-199. https://doi.org/10.1615/intjmedmushr.v13.i2.120

  • Marlina, L., Sukotjo, S., & Marsudi, S. (2015). Potential of oil palm empty fruit bunch (EFB) as media for oyster mushroom, Pleurotus ostreatus cultivation. Procedia Chemistry, 16, 427-431. https://doi.org/10.1016/j.proche.2015.12.074

  • Mitra, P., Khatua, S. O., & Acharya, K. (2013). Free radical scavenging and NOS activation properties of water soluble crude polysaccharide from Pleurotus ostreatus. Asian Journal of Pharmaceutical and Clinical Research, 6(3), 67-70.

  • Morris, H. J., Llauradó, G., Beltrán, Y., Lebeque, Y., Bermúdez, R. C., García, N., & Moukha, S. (2016). The use of mushrooms in the development of functional foods, drugs, and nutraceuticals. In I. C. F. R. Ferreira, P. Morales, & L. Barros (Eds.), Wild plants, mushrooms and nuts: Functional food properties and applications (pp. 123-157). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118944653.ch5

  • Naraian, R., Sahu, R. K., Kumar, S., & Garg, S. K. (2009). Influence of different nitrogen rich supplements during cultivation of Pleurotus florida on corn cob substrate. Environmentalist, 29, 1–7. https://doi.org/10.1007/s10669-008-9174-4

  • Petchpradab, P., Yoshida, T., Charinpanitkul, T., & Matsumura, Y. (2009). Hydrothermal pretreatment of rubber wood for the saccharification process. Industrial and Engineering Chemistry Research, 48(9), 4587-4591. https://doi.org/10.1021/ie801314h

  • Pokhrel, C. P., Kalyan, N., Budathoki, U., & Yadav, R. K. P. (2013). Cultivation of Pleurotus sajor-caju using different agricultural residues. International Journal of Agricultural Policy and Research, 1(2), 19-23.

  • Rajapakse, J. C., Rubasingha, P., & Dissanayake, N. N. (2007). The effect of six substrates on the growth and yield of American oyster mushrooms based on juncao technology. Journal of Agricultural Sciences - Sri Lanka, 3(2), 82–85. http://doi.org/10.4038/jas.v3i2.8105

  • Rashidi, A. M., & Yang, T. A. (2016). Nutritional and antioxidant values of oyster mushroom (P. sajor-caju) cultivated on rubber sawdust. International Journal on Advanced Science, Engineering and Information Technology, 6(2), 161-164. https://doi.org.10.18517/ijaseit.6.2.610

  • Rizki, M., & Tamai, Y. (2011). Effects of different nitrogen rich substrates and their combination to the yield performance of oyster mushroom (Pleurotus ostreatus). World Journal of Microbiology and Biotechnology, 27(7), 1695-1702. https://doi.org/10.1007/s11274-010-0624-z

  • Sanchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 85–194. https://doi.org/10.1016/j.biotechadv.2008.11.001

  • Sanchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321-1337. https://doi.org/10.1007/s00253-009-2343-7.

  • Sanjel, P., Shrestha, R. K., & Shrestha, J. (2021). Performance of oyster mushroom (Pleurotus ostreatus) grown on different finger millet husk substrates. Journal of Agriculture and Natural Resources, 4(1), 291–300. https://doi.org/10.3126/janr.v4i1.33370

  • Sharma, S., Yadav, R. K. P., & Pokhrel, C. P. (2013). Growth and yield of oyster mushroom (Pleurotus ostreatus) on different substrates. Journal on New Biological Reports, 8(2), 1-8. https://doi.org.10.38112/agw.2020.v08i01.001

  • Singh, P., Langowski, H. C., Wani, A. A., & Saengerlaub, S. (2010). Recent advances in extending the shelf life of fresh Agaricus mushrooms: A review. Journal of the Science of Food and Agriculture, 90(9), 1393-1402. https://doi.org/10.1002/jsfa.3971

  • Sopanrao, P. S., Abrar, A. S., Manoharrao, T. S., & Vaseem, B. M. M. (2010). The nutritional value of Pleurotus ostreatus (Jacq: Fr) Kumm cultivated on different lignocellulosic agrowastes. Innovative Romanian Food Biotechnology, 7, 66-76.

  • Tabi, A. N. M., Zakil, F. A., Fauzai, W. N. F. M., Ali, N., & Hassan, O. (2008). The usage of empty fruit bunch (EFB) and palm pressed fibre (PPF) as substrates for the cultivation of Pleurotus ostreatus. Jurnal Teknologi, 49, 189-196.

  • Tesfaw, A., Tadesse, A., & Kiros, G. (2015). Optimization of oyster (Pleurotus ostreatus) mushroom cultivation using locally available substrates and materials in Debre Berhan, Ethiopia. Journal of Applied Biology and Biotechnology, 3(1), 15-20. https://doi.org/10.7324/jabb.2015.3103

  • Upadhyay, R. C., Verma, R.N., Singh, S. K., & Yadav, M. C. (2002). Effect of organic nitrogen supplementation in Pleurotus species. Mushroom Biology and Mushroom Products, 105(3), 225-232.

  • Vamanu, E. (2012). In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules, 17(4), 3653-3671. https://doi.org.10.3390/molecules17043653

  • Verma, A., Singh, A., & Mathur, N. (2013). Bioremediation of environmental and agricultural lignocellulosic waste through mushroom cultivation. International Journal of Chemical Science, 11(1), 399-409.

  • Zubairi, S. I., Zabidi, N. A. S. M., Azman, Z. Z., Kamaruddin, S. N. D. M., Kasim, Z. M. K., Lazim, A. M., Nurzahim, Z., & Jamil, M. S. M. (2022). Pleurotus ostreatus cultivation: Physico-chemical characteristics of a robust preblocks oyster mushroom substrate with absorptive starch binders. Sains Malaysiana, 51(2), 329-343. http://doi.org/10.17576/jsm-2022-5102-01

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JTAS-2658-2022

Download Full Article PDF

Share this article

Related Articles