PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (5) Aug. 2023 / JST-3796-2022

 

Thermal Properties of Kenaf Fiber Reinforced Polyamide 6 Composites by Melt Processing

Norihan Abdullah, Khalina Abdan, Mohd Huzaifah Mohd Roslim, Mohd Nazren Radzuan, Lee Ching Hao and Ayu Rafiqah Shafi

Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.16

Keywords: Composites, kenaf fiber, natural fiber, polyamide 6, polymer, thermal properties

Published on: 31 July 2023

In recent years, there has been much effort to find cost-effective ways to replace petroleum-based commodity plastics with biodegradable polymers with comparable thermal characteristics. The 5 wt.%, 10 wt.%, and 15 wt.% kenaf fiber were melted, and blended with polyamide-6 via a Brabender mixer, followed by compression molding. To evaluate the thermal properties of composites, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic thermomechanical analysis (DMA) were conducted. According to the TGA results, increased kenaf fiber contents decreased the composite’s thermal stability. Neat PA6 matrix decomposed rapidly at 425°C, which was comparatively higher than PA6 composites. From the DSC analysis, the addition of natural fibers resulted in quantified changes in the glass transition temperature (Tg), melting temperature (Tm), and crystallization temperature (Tc) of the PA6 composites. According to the DMA, the storage modulus of neat PA6 was 1177 MPa and decreased to 1076 MPa for 5 wt% of kenaf fiber in PA6 composite. The Kenaf fiber/polyamide 6 composites appeared to have lower thermal stability than neat PA6. This study demonstrated that the kenaf fiber/polyamide 6 composites were successfully prepared, and a detailed thermal analysis was conducted. Improving the KF/PA6 composites can be further studied to increase thermal stability.

  • Akhtar, M. N., Sulong, A. B., Radzi, M. K. F., Ismail, N. F., Raza, M. R., Muhamad, N., & Khan, M. A. (2016). Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International, 26(6), 657-664. https://doi.org/10.1016/j.pnsc.2016.12.004

  • Akil, H. M., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., & Bakar, A. A. (2011). Kenaf fiber reinforced composites: A review. Materials and Design, 32(8-9), 4107-4121. https://doi.org/10.1016/j.matdes.2011.04.008

  • ASTM D4065-12. (2012). Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Proceduresy, ASTM International , West Conshohocken, PA, 2012.

  • ASTM D3418-15. (2015). Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA, 2015.

  • ASTM E1131-08. (2014). Standarad Test Methods for Compositional Analysis by Thermogravimety, ASTM International , West Conshohocken, PA, 2014.

  • Atiqah, A., Chandrasekar, M., Kumar, T. S. M., Senthilkumar, K., & Ansari, M. N. M. (2020). Characterization and interface of natural and synthetic hybrid composites. Encyclopedia of Renewable and Sustainable Materials, 4, 389-400. https://doi.org/10.1016/b978-0-12-803581-8.10805-7

  • Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174, Article 106956. https://doi.org/10.1016/j.compositesb.2019.106956

  • Bhambure, S., & Rao, A. S. (2021). Experimental investigation of impact strength of kenaf fiber reinforced polyester composite. Materials Today: Proceedings, 46(part 2), 1134-1138. https://doi.org/10.1016/j.matpr.2021.02.055

  • Bledzki, A. K., Franciszczak, P., Osman, Z., & Elbadawi, M. (2015). Polypropylene biocomposites reinforced with softwood , abaca , jute , and kenaf fibers. Industrial Crops and Products, 70, 91-99. https://doi.org/10.1016/j.indcrop.2015.03.013

  • Boland, C. S., De Kleine, R., Keoleian, G. A., Lee, E. C., Kim, H. C., & Wallington, T. J. (2015). Life cycle impacts of natural fiber composites for automotive applications effects of renewable energy content and lightweighting. Journal of Industrial Ecology, 20(1), 179-189. https://doi.org/10.1111/jiec.12286

  • Cheung, H. Y., Ho, M. P, Lau, K. T, Cardona, F., & Hui, D. (2009). Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7), 655-663. https://doi.org/10.1016/j.compositesb.2009.04.014

  • Devnani, G. L., & Sinha, S. (2019). Effect of nanofillers on the properties of natural fiber reinforced polymer composites. Materials Today: Proceedings, 18(part 3), 647-654. https://doi.org/10.1016/j.matpr.2019.06.460

  • El-Shekeil, Y. A., Sapuan, S. M., Abdan, K., & Zainudin, E. S. (2012). Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Materials and Design, 40, 299–303. https://doi.org/10.1016/j.matdes.2012.04.003

  • El-Shekeil, Y. A., Sapuan, S. M., Khalina, A., Zainudin, E. S., & Al-Shuja’a, O. M. (2012). Effect of alkali treatment on mechanical and thermal properties of kenaf fiber-reinforced thermoplastic polyurethane composite. Journal of Thermal Analysis and Calorimetry, 109(3), 1435-1443. https://doi.org/10.1007/s10973-012-2258-x

  • Guillou, J., Lavadiya. D, N., Munro, T., Fronk, T., & Ban, H. (2018). From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials. Applied Thermal Engineering, 128, 1372-1381. https://doi.org/10.1016/j.applthermaleng.2017.09.095

  • Gowda, T. G. Y., Sanjay, M. R., Bhat, K. S., Madhu, P., Senthamaraikannan, P., & Yogesha, B. (2018). Polymer Matrix-Natural Fiber Composites : An Overview. Cogent Engineering, 5(1), Article 1446667. https://doi.org/10.1080/23311916.2018.1446667

  • Hamidon, M. H., Sultan, M. T. H., Ariffin, A. H., & Shah, A. U. M. (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. Journal of Material Research and Tecnhology, 8(3), 3327-3337. https://doi.org/10.1016/j.jmrt.2019.04.012

  • Hashim, M. Y., Amin, A. M., Marwah, O. M. F., Othman, M. H., Yunus, M. R. M., & Huat, N. C. (2017). The effect of alkali treatment under various conditions on physical properties of kenaf fiber. In Journal of Physics: Conference Series (Vol. 914, Article 012030). IOP Publishing. https://doi.org/10.1088/1742-6596/914/1/012030

  • Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2008). Effect of fiber surface-treatments on the properties of laminated biocomposites from poly ( lactic acid ) ( PLA ) and kenaf fibers. Composite Science and Technology, 68(2), 424-432. https://doi.org/10.1016/j.compscitech.2007.06.022

  • Kamarudin, S. H., Abdullah, L. C., Aung, M. M., & Ratnam, C. T. (2020). Thermal and structural analysis of epoxidized jatropha oil and alkaline treated kenaf fiber reinforced poly(Lactic acid) biocomposites. Polymers, 12(11), Article 2604. https://doi.org/10.3390/polym12112604

  • Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L., & Vigneshkumar, N. (2019). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings, 27(part 3), 2828-2834. https://doi.org/10.1016/j.matpr.2020.01.011

  • Kiziltas, E. E., Yang, H. S., Kiziltas, A., Boran, S., Ozen, E., & Gardner, D. J. (2016). Thermal analysis of polyamide 6 composites filled by natural fiber blend. BioResources, 11(2), 4758-4769. https://doi.org/10.15376/biores.11.2.4758-4769

  • Mochane, M. J., Mokhena, T. C., Mokhothu, T. H., Mtibe, A., Sadiku, E. R., Ray, S. S., Ibrahim, I. D., & Daramola, O. O. (2019). Recent progress on natural fiber hybrid composites for advanced applications : A review. eXPRESS Polymer Letters, 13(2), 159-198. https://doi.org/10.3144/expresspolymlett.2019.15

  • Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015, Article 243947. https://doi.org/10.1155/2015/243947

  • Mustafa, W. A., Saidi, S. A., Zainal, M., & Santiagoo, R. (2018). Experimental study of composites material based on thermal analysis. Akademia Baru, 43(1), 37-44.

  • Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. https://doi.org/10.1016/j.conbuildmat.2014.11.043

  • Salem, I. A. S., Rozyanty, A. R., Betar, B. O., Adam, T., Mohammed, M., & Mohammed, A. M. (2017). Study of the effect of surface treatment of kenaf fiber on chemical structure and water absorption of kenaf filled unsaturated polyester composite. In Journal of Physics: Conference Series (Vol.908, Article 012001). IOP Publishing. https://doi.org/10.1088/1742-6596/908/1/012001

  • Sánchez-safont, E. L., Aldureid, A., & Lagarón, J. M. (2018). Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Composites Part B: Engineering, 145, 215-225. . https://doi.org/10.1016/j.compositesb.2018.03.037

  • Sanjay, M. R., Arpitha, G. R., & Yogesha, B. (2015). Study on mechanical properties of natural - glass fibre reinforced polymer hybrid composites: A review. Materials Today: Proceedings, 2(4–5), 2959-2967. https://doi.org/10.1016/j.matpr.2015.07.264

  • Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101

  • Sanjay, M., & Yogesha, B. (2017). Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 4(2), 2739-2747. https://doi.org/10.1016/j.matpr.2017.02.151

  • Hirçin, B. S., Yörür, H., & Mengeloğlu, F. (2020). Effects of filler type and content on the mechanical, morphological, and thermal properties of waste casting polyamide 6 (W-PA6G)-based wood plastic composites. BioResources, 16(1), 655-668. https://doi.org/10.15376/biores.16.1.655-668

  • Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S. M., Asim, M., & Saba, N. (2018). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463. https://doi.org/10.1002/pc.24747

  • Sood, M., & Dwivedi, G. (2018). Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum, 27(4), 775-783. https://doi.org/10.1016/j.ejpe.2017.11.005

  • Sreenivas, H. T., Krishnamurthy, N., & Arpitha, G. R. (2020). A comprehensive review on light weight kenaf fiber for automobiles. International Journal of Lightweight Materials and Manufacture, 3(4), 328-337. https://doi.org/10.1016/j.ijlmm.2020.05.003

  • Srinivas, K., Naidu, A. L., & Bahubalendruni, M. V. A. R. (2017). A review on chemical and mechanical properties of natural fiber reinforced polymer composites. International Journal of Performability Engineering, 13(2), 189-200. https://doi.org/10.23940/ijpe.17.02.p8.189200

  • Thiruchitrambalam, M., Alavudeen, A., & Venkateshwaran, N. (2012). Review on kenaf fiber composites. Reviews on Advanced Materials Science, 32(2), 106-112.

  • Verma, R., & Shukla, M. (2018). Characterization of mechanical properties of short Kenaf fiber-HDPE green composites. Materials Today: Proceedings, 5(2), 3257-3264. https://doi.org/10.1016/j.matpr.2017.11.567

  • Vinayagamoorthy, R., & Manoj, I. V. (2018). Natural fiber for green technology in automotive industry : A brief review Natural fiber for green technology in automotive industry: A brief review. In IOP Conference Series: Materials Science and Engineering (Vol.368, Article 012012). IOP Publishing. https://doi.org/10.1088/1757-899X/368/1/012012

  • Xu, K., Zheng, Z., Du, G., Zhang, Y., Wang, Z., Zhong, T., Xie, L., & Wang, S. (2019). Effects of polyamide 6 reinforcement on the compatibility of high-density polyethylene/environmental-friendly modified wood fiber composites. Journal of Applied Polymer Science, 136(38), Article 47984. https://doi.org/10.1002/app.47984

  • Xu, S., Fang, Y., Yi, S., He, J., Zhai, X., Song, Y., Wang, H., & Wang, Q. (2018). Effects of lithium chloride and chain extender on the properties of wood fiber reinforced polyamide 6 composites. Polymer Testing, 72, 132-139. https://doi.org/10.1016/j.polymertesting.2018.10.005

  • Zhang, J., Koubaa, A., Xing, D., Liu, W., Wang, Q., Wang, X. M., & Wang, H. (2020). Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Materials and Design, 191, Article 108589. https://doi.org/10.1016/j.matdes.2020.108589

  • Zhu, S., Guo, Y., Chen, Y., & Liu, S. (2020). Low water absorption, high-strength polyamide 6 composites blended with sustainable bamboo-based biochar. Nanomaterials, 10(7), Article 1367. https://doi.org/10.3390/nano10071367

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3796-2022

Download Full Article PDF

Share this article

Related Articles