e-ISSN 2231-8526
ISSN 0128-7680
Teh Raihana Nazirah Roslan and Chee Keong Ch’ng
Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022
DOI: https://doi.org/10.47836/pjst.30.4.27
Keywords: Bayes’ theorem, event tree analysis, healthcare, high technology medical, probabilistic risk analysis, robotic surgery, thyroid surgery
Published on: 28 September 2022
In moving towards Industrial Revolution 4.0, healthcare and medicine are one of the biggest areas of concern which is beneficial to maintaining healthy living. This study seeks to identify the potential problems and risks related to high-technology medical approaches, namely the da Vinci robotic surgical systems, specifically used for thyroidectomy surgery. In particular, the risks embedded in robotic surgeries in terms of health and economy are investigated. Furthermore, a probabilistic risk analysis was conducted to assess the risk among surgeons of the da Vinci robotic surgery using event tree analysis and Bayesian network. This research revealed that the probability of success for surgeons without prior robotic surgery experience was 0.10. It highlights the importance of proper training for medical practitioners in handling advanced medical equipment by considering the related risk involved in patients.
AHRQ. (2013). National healthcare disparities report. Agency for Healthcare Research and Quality. http://www.ahrq.gov/research/findings/nhqrdr/nhdr13/chap4.html
Alam, A. Y. (2016). Steps in the process of risk management in healthcare. Journal of Epidemiology and Preventive Medicine, 2(2), 1-5.
Aven, T., & Eidesen, K. (2007). A predictive Bayesian approach to risk analysis in health care. BMC Medical Research Methodology, 7(1), 1-8.
Cho, J. S., Hahn, K. Y., Kwak, J. M., Kim, J., Baek, S. J., Shin, J. W., & Kim, S. H. (2013). Virtual reality training improves da Vinci performance: A prospective trial. Journal of Laparoendoscopic and Advanced Surgical Techniques, 23(12), 992-998. https://doi.org/10.1089/lap.2012.0396
DeSouza, A. L., Prasad, L. M., Park, J. J., Marecik, S., Blumetti, J., & Abcarian, H. (2010). Robotic assistance in right hemicolectomy: Is there a role? Journal of Disease of the Colon & Rectum, 53(7), 1000-1006. https://doi.org/10.1007/DCR.0b013e3181d32096
Ferson, S., Hajagos, J., Berleant, D., Zhang, J., Tucker, W. T., Ginzburg, L., Nelsen, R., Oberkampf, W. L., & Hall, C. (2004). Dependence in Dempster-Shafer theory and probability bounds analysis. Sandia National Laboratories.
Freeman, J. (2022). Event tree analysis - The risk assessment application tool. Edraw. https://www.edrawsoft.com/event-tree-introduction.html
Gleason, P. M., & Harris, J. E. (2019). The Bayesian approach to decision making and analysis in nutrition research and practice. Journal of the Academy of Nutrition and Dietetics, 119(12), 1993-2003. https://doi.org/10.1016/j.jand.2019.07.009
Lee, J., Nah, K. Y., Kim, R. M., Ahn, Y. H., Soh, E. Y., & Chung, W. Y. (2010). Differences in postoperative outcomes, function, and cosmesis: Open versus robotic thyroidectomy. Surgical Endoscopy, 24, 3186-3194. https://doi.org/10.1007/s00464-010-1113-z
Mattos, L. S., Caldwell, D. G., Peretti, G., Mora, F., Guastini, L., & Cingolani, R. (2016). Microsurgery robots: Addressing the needs of high-precision surgical interventions. Swiss Medical Weekly, 146, 1-14. https://doi.org/10.4414/smw.2016.14375
Ng, A. T. L., & Tam, P. C. (2014). Current status of robot-assisted surgery. Hong Kong Medical Journal, 20(3), 241-250. https://doi.org/10.12809/hkmj134167
Nivolianitou, Z. S., Leopoulos, V. N., & Konstantinidou, M. (2004). Comparison of techniques for accident scenario analysis in hazardous systems. Journal of Loss Prevention in the Process Industries, 17(6), 467-475. https://doi.org/10.1016/j.jlp.2004.08.001
Olanrewaju, O. A., Faieza, A. A., & Syakirah, K. (2013). Current trend of robotics application in medical. IOP Conference Series: Materials Science and Engineering, 46, Article 012041. https://doi.org/10.1088/1757-899X/46/1/012041
Oppermann, A. (2018). Bayes’ theorem: The holy grail of data science. Towards Data Science. https://towardsdatascience.com/bayes-theorem-the-holy-grail-of-data-science-55d93315defb
Park, J. H., Lee, J., Hakim, N. A., Kim, H. Y., Kang, S. W., Jeong, J. J., & Chung, W. Y. (2015). Robotic thyroidectomy learning curve for beginning surgeons with little or no experience of endoscopic surgery. Head and Neck, 37(12), 1705-1711. https://doi.org/10.1002/hed.23824
Perez, R. E., & Schwaitzberg, S. D. (2019). Robotic surgery: Finding value in 2019 and beyond. Annals of Laparoscopic and Endoscopic Surgery, 4(3), 1-7. http://dx.doi.org/10.21037/ales.2019.05.02
Sadiq, R., Saint-Martin, E., & Kleiner, Y. (2008). Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis. Urban Water Journal, 5(4), 287-304. https://doi.org/10.1080/15730620802213504https://doi.org/10.12809/hkmj134167
Sahabudin, R. M., Arni, T., Ashani, N., Arumuga, K., Rajenthran, S., Murali, S., & Menon, M. (2006). Development of robotic program: An Asian experience. World Journal of Urology, 24, 161-164. https://doi.org/10.1007/s00345-006-0069-z
Simon, C., Weber, P., & Levrat, E. (2007). Bayesian networks and evidence theory to model complex systems reliability. Journal of Computers, 2(1), 33-43.
Sklet, S. (2004). Comparison of some selected methods for accident investigation. Journal of Hazardous Materials, 111(1-3), 29-37. https://doi.org/10.1016/j.jhazmat.2004.02.005
Spouge, J. (1999). A guide to quantitative risk assessment for offshore installations. CMPT Publication.
Talib, Y. Y. A. (2017, August 28). Pembedahan robotic[Robotic surgery]. Harian Metro. https://www.hmetro.com.my/hati/2017/08/258470/pembedahan-robotik
Weaver, A., & Steele, S. (2016) Robotics in colorectal surgery. F1000 Research, 5, Article 2373. https://doi.org/10.12688/f1000research.9389.1
Zakaria, A. D., Toh, J. W. T., & Kim, S. H. (2018). Future perspectives in robotic colorectal surgery. In N. Kim, K. Sugihara & J. T. Liang (Eds.), Surgical treatment of colorectal cancer (pp. 315-325). Springer. https://doi.org/10.1007/978-981-10-5143-2_29
Zheng, X., & Liu, M. (2009). An overview of accident forecasting methodologies. Journal of Loss Prevention in the Process Industries, 22(4), 484-491. https://doi.org/10.1016/j.jlp.2009.03.005
Zoullouti, B., Amghar, M., & Nawal, S. (2019). Using Bayesian networks for risk assessment in healthcare system. In D. McNair (Ed.), Bayesian networks: advances and novel applications (pp. 39-53). IntechOpen. https://doi.org/10.5772/intechopen.80464
ISSN 0128-7680
e-ISSN 2231-8526