e-ISSN 2231-8526
ISSN 0128-7680
Gan Siang Tan, Siti Zuraidah Ibrahim, Mohd Nazri A Karim, Ping Jack Soh, Khuzairi Masrakin and Sugchai Tantiviwat
Pertanika Journal of Science & Technology, Pre-Press
DOI: https://doi.org/10.47836/pjst.33.3.10
Keywords: 3 dB power divider, bi-layered substrate, slot aperture, substrate integrated waveguide
Published: 2025-03-26
This study presents a 3 dB power divider based on a two-layer Substrate Integrated Waveguide (SIW) structure designed to achieve high isolation and optimal return loss at both output ports while maintaining low insertion loss. The initial configuration uses a conventional Y-junction SIW power divider, which demonstrates limited isolation between output ports. A rectangular slot was incorporated at the Y-junction, significantly enhancing isolation. Although this adjustment introduced some insertion loss, a second substrate layer with a copper patch was added above the slot, effectively minimizing insertion loss and preserving strong isolation without the need for an isolation resistor. The resistor-free design simplifies fabrication and improves reliability by avoiding components that may fail under high power conditions. Due to fabrication constraints, the power divider is optimized for performance at two center frequencies, 12 GHz and 24 GHz, with prototyping focused on 12 GHz. Simulated and measured results at 12 GHz are in close agreement, confirming measured isolation performance with at least 10 dB of isolation over a fractional bandwidth of 9.9%. While this narrowband design may not suit all applications, it offers high precision for systems that require strict frequency isolation, making it especially advantageous for targeted narrowband applications where isolation and reliability are critical.
Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K., & Conciauro, G. (2002). Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave and Wireless Components Letters, 12(9), 333–335. https://doi.org/10.1109/LMWC.2002.803188
Chen, K., Yan, B., & Xu, R. (2010). A novel W-band ultra-wideband substrate integrated waveguide (SIW) T-junction power divider. In 2010 International Symposium on Signals, Systems and Electronics (Vol. 1, pp. 1-3). IEEE Publishing. https://doi.org/10.1109/issse.2010.5638214
Chi, P. L., Chen, Y. M., & Yang, T. (2020). Single-layer dual-band balanced substrate- integrated waveguide filtering power divider for 5G millimeter-wave applications. IEEE Microwave and Wireless Components Letters, 30(6), 585–588. https://doi.org/10.1109/LMWC.2020.2987170
Deslandes, D., & Wu, K. (2006). Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2516–2526. https://doi.org/10.1109/TMTT.2006.875807
Djerafi, T., Hammou, D., Tatu, S., & Wu, K. (2013). Bi-layered substrate integrated waveguide Wilkinson power divider/combiner. In 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (pp. 1-3). IEEE Publishing. https://doi.org/10.1109/MWSYM.2013.6697556
Djerafi, T., Hammou, D., Wu, K., & Tatu, S. O. (2014). Ring-shaped substrate integrated waveguide Wilkinson power dividers/combiners. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(9), 1461–1469. https://doi.org/10.1109/TCPMT.2014.2342156
Duraisamy, T., Kamakshy, S., Sholampettai Subramanian, K., Barik, R. K., & Cheng, Q. S. (2022). Design and implementation of compact tri- and quad-band SIW power divider using modified circular complementary split-ring resonators. International Journal of Microwave and Wireless Technologies, 14(10), 1241–1249. https://doi.org/10.1017/S1759078721001720
Feng, W., Hong, M., Xun, M., & Che, W. (2017). A novel wideband balanced-to-unbalanced power divider using symmetrical transmission lines. IEEE Microwave and Wireless Components Letters, 27(4), 338–340. https://doi.org/10.1109/LMWC.2017.2678403
He, Z., Cai, J., Shao, Z., Li, X., & Huang, Y. (2013). A novel power divider integrated with SIW and DGS technology. Progress In Electromagnetics Research, 143, 223–242. https://doi.org//10.2528/PIER13022005
Huang, Y. M., Jiang, W., Jin, H., Zhou, Y., Leng, S., Wang, G., & Wu, K. (2017). Substrate-integrated waveguide power combiner/divider incorporating absorbing material. IEEE Microwave and Wireless Components Letters, 27(10), 885-887. https://doi.org/10.1109/LMWC.2017.2744699
Kao, J. C., Tsai, Z. M., Lin, K. Y., & Wang, H. (2012). A modified wilkinson power divider with isolation bandwidth improvement. IEEE Transactions on Microwave Theory and Techniques, 60(9), 2768–2780. https://doi.org/10.1109/TMTT.2012.2206402
Kim, K., Byun, J., & Lee, H. Y. (2010). Substrate integrated waveguide Wilkinson power divider with improved isolation performance. Progress In Electromagnetics Research Letters, 19, 41–48. https://doi.org/10.2528/pierl10082407
Liu, B. G., Lyu, Y. P., Zhu, L., & Cheng, C. H. (2021). Compact square substrate integrated waveguide filtering power divider with wideband isolation. IEEE Microwave and Wireless Components Letters, 31(2), 109–112. https://doi.org/10.1109/LMWC.2020.3042332
Moulay, A., & Djerafi, T. (2018). Wilkinson power divider with fixed width substrate-integrated waveguide line and a distributed isolation resistance. IEEE Microwave and Wireless Components Letters, 28(2), 114–116. https://doi.org/10.1109/LMWC.2018.2790706
Nguyen, N. H., Ghiotto, A., Martin, T., Vilcot, A., Wu, K., & Vuong, T. P. (2021). Fabrication-tolerant broadband air-filled SIW isolated power dividers/combiners. IEEE Transactions on Microwave Theory and Techniques, 69(1), 603-615. https://doi.org/10.1109/TMTT.2020.3036127
Nguyen, N. N. T., Nguyen, T. H., Luong, D. M., Van, T. M., Nguyen, T. L., & Tran, T. T. H. (2024). A Ku-band SIW power divider with high isolation using coupled resonators. In 2024 9th International Conference on Integrated Circuits, Design, and Verification (ICDV) (pp. 239-244). IEEE Publishing. https://doi.org/10.1109/ICDV61346.2024.10617110
Peng, H., Yang, Z., Liu, Y., Yang, T., & Tan, K. (2013). An Improved UWB Non-Coplanar Power Divider. Progress In Electromagnetics Research, 143, 223–242. https://doi.org/10.2528/PIER13011003
Shen, W., Ling, X. B., Zou, W. J., Huang, S., & Chen, K. (2021). A tri-section substrate integrated waveguide filtering power divider with a wide stopband. Journal of Electromagnetic Wave and Applications, 36(4), 479–487. https://doi.org/10.1080/09205071.2021.1972843
Smith, N. A., & Abhari, R. (2009). Compact substrate integrated waveguide Wilkinson power dividers. In 2009 IEEE Antennas and Propagation Society International Symposium (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/APS.2009.5171656
Tan, G. S., Ibrahim, S. Z., & Razalli, M. S. (2016). 24GHz substrate integrated waveguide power splitter for six-port short-range radar-based sensor. In 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) (pp. 113-116). IEEE Publishing. https://doi.org/10.1109/APACE.2016.7915865
Xu, F., & Wu, K. (2005). Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 53(1), 66–72. https://doi.org/10.1109/TMTT.2004.839303
Yang, M. X., Shen, D., Zhang, X., & Yuan, H. (2021). Multilayer slot coupling ultra-wideband power divider based on integrated substrate gap waveguide. In 2021 13th Global Symposium on Millimeter-Waves & Terahertz (GSMM) (pp. 1-3). IEEE Publishing. https://doi.org/10.1109/GSMM53250.2021.9511961
Yang, Z., Chen, W., Lin, H., Yang, T., & Jin, H. (2016). A novel SIW power divider with good out-of-band rejection and isolation. EICE Electronics Express, 13(8), Article 20160160. https://doi.org/10.1587/elex.13.20160160
Yazdanpanah, I., Afrooz, K., & Moznebi, A. (2016). High Q power divider/combiner with high output isolation using substrate integrated waveguide technology. Journal of Communication Engineering, 5(2), 106–115. https://doi.org/10.22070/jce.2017.1764.1009
Zarghami, S., & Hayati, M. (2022). Narrow-band power dividers with wide-range tunable power-dividing ratio. Scientific Reports, 12, Article 17351. https://doi.org/10.1038/s41598-022-22178-0
ISSN 0128-7702
e-ISSN 2231-8534
Share this article