e-ISSN 2231-8526
ISSN 0128-7680
Muhammad Imran Najeeb, Nurul Aqilah Razeman, Zarina Itam, Salmia Beddu, Nazirul Mubin Zahari, Mohd Zakwan Ramli, Mohd Hafiz Zawawi, Nur Liyana Mohd Kamal, Agusril Syamsir and Daud Mohamad
Pertanika Journal of Science & Technology, Pre-Press
DOI: https://doi.org/10.47836/pjst.33.3.05
Keywords: Asphalt, heat exchange, machine learning, solar energy, solar pavement collector
Published: 2025-03-26
Revolutionizing solar energy utilization through solar pavement technology offers a path to sustainable infrastructure and reduced greenhouse emissions. This review article synthesizes findings from experimental, numerical and machine learning-based studies to optimize solar energy harvesting in pavement applications. The experimental and numerical analyses focus on achieving optimal thermal efficiency and maximizing the outlet pipe’s temperature in Pavement Solar Collectors (PSC) through detailed parametric studies. Machine learning tools are then employed to further enhance PSC performance by integrating additional input parameters, varied PSC designs, and diverse environmental conditions. Key insights from this review indicate that integrating machine learning into PSC design significantly broadens the scope and efficiency of these technologies, positioning solar pavement as a viable approach to reducing greenhouse gas emissions. Future works from this technology include looking into a multi-functional renewable energy system that produces hydrogen powered by solar power. Additionally, the adaptability of these developed models suggests potential applications in solar collectors for roof tiles, building walls, and related energy-efficient systems.
Abbas, F. A., & Alhamdo, M. H. (2024). Experimental and numerical analysis of an asphalt solar collector with a conductive asphalt mixture. Energy Reports, 11, 327–341. https://doi.org/10.1016/j.egyr.2023.11.065
Abo-Hashema, M. A. (2013). Modeling pavement temperature prediction using artificial neural networks. Airfield and Highway Pavement 2013, 490–505. https://doi.org/10.1061/9780784413005.039
Ahmad, M., Itam, Z., Beddu, S., Alanimi, F. B. I., & Soanathan, S. A. P. (2018). A determination of solar heat collection in sepertine copper and rubber pipe embedded in asphalt pavement using finite element method. Journal of Engineering and Applied Sciences, 13(1), 181–189. https://doi.org/10.3923/jeasci.2018.181.189
Ahmadi, M. H., Baghban, A., Sadeghzadeh, M., Zamen, M., Mosavi, A., Shamshirband, S., Kumar, R., & Mohammadi-Khanaposhtani, M. (2020). Evaluation of electrical efficiency of photovoltaic thermal solar collector. Engineering Applications of Computational Fluid Mechanics, 14(1), 545–565. https://doi.org/10.1080/19942060.2020.1734094
Al-Manea, A., Al-Rbaihat, R., Kadhim, H. T., Alahmer, A., Yusaf, T., & Egab, K. (2022). Experimental and numerical study to develop TRNSYS model for an active flat plate solar collector with an internally serpentine tube receiver. International Journal of Thermofluids, 15, Article 100189. https://doi.org/10.1016/j.ijft.2022.100189
Alim, M. A., Tao, Z., Abden, M. J., Rahman, A., & Samali, B. (2020). Improving performance of solar roof tiles by incorporating phase change material. Solar Energy, 207, 1308–1320. https://doi.org/10.1016/j.solener.2020.07.053
Beddu, S., Talib, S. H. A., & Itam, Z. (2016). The potential of heat collection from solar radiation in asphalt solar collectors in Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 32, No. 1, p. 012045). IOP Publishing. https://doi.org/10.1088/1755-1315/32/1/012045
Bhan, C., Verma, L., & Singh, J. (2020). Alternative fuels for sustainable development. In Environmental Concerns and Sustainable Development (pp. 317–331). Springer. https://doi.org/10.1007/978-981-13-5889-0_16
Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galvan, E., PortilloGuisado, R. C., Prats, M. A. M., Leon, J. I., & Moreno-Alfonso, N. (2006). Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on Industrial Electronics, 53(4), 1002–1016. https://doi.org/10.1109/TIE.2006.878356
Dezfooli, A. S., Nejad, F. M., Zakeri, H., & Kazemifard, S. (2017). Solar pavement: A new emerging technology. Solar Energy, 149, 272–284. https://doi.org/10.1016/j.solener.2017.04.016
Elaziz, M. A., Senthilraja, S., Zayed, M. E., Elsheikh, A. H., Mostafa, R. R., & Lu, S. (2021). A new random vector functional link integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal collector combined with electrolytic hydrogen production system. Applied Thermal Engineering, 193, Article 117055. https://doi.org/10.1016/j.applthermaleng.2021.117055
El-Hadary, M. I., Senthilraja, S., & Zayed, M. E. (2023). A hybrid system coupling spiral type solar photovoltaic thermal collector and electrocatalytic hydrogen production cell: Experimental investigation and numerical modeling. Process Safety and Environmental Protection, 170, 1101–1120. https://doi.org/10.1016/j.psep.2022.12.079
Esposito, L., & Romagnoli, G. (2023). Overview of policy and market dynamics for the deployment of renewable energy sources in Italy: Current status and future prospects. Heliyon, 9(7), Article e17406. https://doi.org/10.1016/j.heliyon.2023.e17406
Ferreira, A. C., Silva, J., Teixeira, S., Teixeira, J. C., & Nebra, S. A. (2020). Assessment of the stirling engine performance comparing two renewable energy sources: Solar energy and biomass. Renewable Energy, 154, 581–597. https://doi.org/10.1016/j.renene.2020.03.020
Finn, J., Leitte, A., Fabisch, M., & Henninger, S. (2021). Analysing the efficiency of solar roads within settlement areas in Germany. Urban Climate, 38, Article 100894. https://doi.org/10.1016/j.uclim.2021.100894
Garg, A., & Saini, R. P. (2018). Study on design of cavity receiver of concentrating solar power plants - A review. In L. Chandra & A. Dixit (Eds.), Concentrated Solar Thermal Energy Technologies: Recent Trends and Applications (pp. 69–77). Springer. https://doi.org/10.1007/978-981-10-4576-9_7
Ghalandari, T., Hernando, D., Hasheminejad, N., Moenielal, M., & Vuye, C. (2023). Lessons learnt from thermo-mechanical feasibility assessment of pavement solar collectors using a FE-ANN approach. Case Studies in Construction Materials, 19, Article e02582. https://doi.org/10.1016/j.cscm.2023.e02582
Ghalandari, T., Shi, L., Sadeghi-Khanegah, F., Van den bergh, W., & Vuye, C. (2023). Utilizing artificial neural networks to predict the asphalt pavement profile temperature in western Europe. Case Studies in Construction Materials, 18, Article e02130. https://doi.org/10.1016/j.cscm.2023.e02130
Gonçalves, W. D. G., Caspers, C., Dupont, J., & Migowski, P. (2020). Ionic liquids for thermoelectrochemical energy generation. Current Opinion in Green and Sustainable Chemistry, 26, Article 100404. https://doi.org/10.1016/j.cogsc.2020.100404
Gong, J., Li, C., & Wasielewski, M. R. (2019). Advances in solar energy conversion. Chemical Society Reviews, 48(7), 1862–1864. https://doi.org/10.1039/C9CS90020A
Guldentops, G., Nejad, A. M., Vuye, C., Van den bergh, W., & Rahbar, N. (2016). Performance of a pavement solar energy collector: Model development and validation. Applied Energy, 163, 180–189. https://doi.org/10.1016/j.apenergy.2015.11.010
Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy - A look into power generation, challenges, and a solar-powered future. International Journal of Energy Research, 43(3), 1049–1067. https://doi.org/10.1002/er.4252
Homadi, A., Hall, T., & Whitman, L. (2020). Using solar energy to generate power through a solar wall. Journal of King Saud University - Engineering Sciences, 32(7), 470–477. https://doi.org/10.1016/j.jksues.2020.03.003
Hu, H., Vizzari, D., Zha, X., & Mantalovas, K. (2023). A comparison of solar and conventional pavements via life cycle assessment. Transportation Research Part D: Transport and Environment, 119, Article 103750. https://doi.org/10.1016/j.trd.2023.103750
Huang, Y., Molavi Nojumi, M., Hashemian, L., & Bayat, A. (2023). Evaluation of a machine learning approach for temperature prediction in pavement base and subgrade layers in Alberta, Canada. Journal of Transportation Engineering, Part B: Pavements, 149(1), Article 04022076. https://doi.org/10.1061/JPEODX.PVENG-1010
Johnsson, J., & Adl-Zarrabi, B. (2020). A numerical and experimental study of a pavement solar collector for the northern hemisphere. Applied Energy, 260, Article 114286. https://doi.org/10.1016/j.apenergy.2019.114286
Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900. https://doi.org/10.1016/j.rser.2017.09.094
Kalidasan, B., Hassan, M. A., Pandey, A. K., & Chinnasamy, S. (2023). Linear cavity solar receivers: A review. Applied Thermal Engineering, 221, Article 119815. https://doi.org/10.1016/j.applthermaleng.2022.119815
Kalidasan, B., Pandey, A. K., Shahabuddin, S., Samykano, M. M. T., & Saidur, R. (2020). Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches. Journal of Energy Storage, 27, Article 101118. https://doi.org/10.1016/j.est.2019.101118
Kehagia, F., Mirabella, S., & Psomopoulos, C. S. (2019). Solar pavement: A new source of energy. In Bituminous Mixtures and Pavements VII (pp. 441–447). CRC Press. https://doi.org/10.1201/9781351063265-61
Kim, J., Lee, S. T., Yang, S., & Lee, J. (2017). Implementation of thermal-energy-harvesting technology on pavement. Journal of Testing and Evaluation, 45(2), Article 20140396. https://doi.org/10.1520/JTE20140396
Li, Y., Chen, J., Dan, H., & Wang, H. (2022). Probability prediction of pavement surface low temperature in winter based on bayesian structural time series and neural network. Cold Regions Science and Technology, 194, Article 103434. https://doi.org/10.1016/j.coldregions.2021.103434
Ma, T., Yang, H., Gu, W., Li, Z., & Yan, S. (2019). Development of walkable photovoltaic floor tiles used for pavement. Energy Conversion and Management, 183, 764–771. https://doi.org/10.1016/j.enconman.2019.01.035
Masoumi, A. P., Tajalli-Ardekani, E., & Golneshan, A. A. (2020). Investigation on performance of an asphalt solar collector: CFD analysis, experimental validation and neural network modeling. Solar Energy, 207, 703–719. https://doi.org/10.1016/j.solener.2020.06.045
Milad, A., Adwan, I., Majeed, S. A., Yusoff, N. I. M., Al-Ansari, N., & Yaseen, Z. M. (2021). Emerging technologies of deep learning models development for pavement temperature prediction. IEEE Access, 9, 23840–23849. https://doi.org/10.1109/ACCESS.2021.3056568
Nojumi, M. M., Huang, Y., Hashemian, L., & Bayat, A. (2022). Application of machine learning for temperature prediction in a test road in Alberta. International Journal of Pavement Research and Technology, 15(2), 303–319. https://doi.org/10.1007/s42947-021-00023-3
Nakayama, Y. (2018). Chapter 6 - Flow of viscous fluid. In Y. Nakayama (Ed.), Introduction to Fluid Mechanics (2nd ed.) (pp. 99–133). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-102437-9.00006-1
Nasir, D. S. N. M., Hughes, B. R., & Calautit, J. K. (2015). A study of the impact of building geometry on the thermal performance of road pavement solar collectors. Energy, 93, 2614–2630. https://doi.org/10.1016/j.energy.2015.09.128
Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), Article 1167990. https://doi.org/10.1080/23311916.2016.1167990
Primc, K., Dominko, M., & Slabe-Erker, R. (2021). 30 years of energy and fuel poverty research: A retrospective analysis and future trends. Journal of Cleaner Production, 301, Article 127003. https://doi.org/10.1016/j.jclepro.2021.127003
Ryms, M., Denda, H., & Jaskuła, P. (2017). Thermal stabilization and permanent deformation resistance of LWA/PCM-modified asphalt road surfaces. Construction and Building Materials, 142, 328–341. https://doi.org/10.1016/j.conbuildmat.2017.03.050
Saha, K., & Frøyen, Y. (2021). An automated approach to facilitate rooftop solar PV installation in smart cities: A comparative study between Bhopal, India and Trondheim, Norway. In P. Sharma (Ed.), Geospatial Technology and Smart Cities: ICT, Geoscience Modeling, GIS and Remote Sensing (pp. 75–92). Springer. https://doi.org/10.1007/978-3-030-71945-6_5
Statista. (2021). Length of Completed Main Paved Roads in Saudi Arabia from 2010 to 2019. https://www.statista.com/statistics/628720/saudi-arabia-total-length-of-main-paved-roads-completed/#statisticContainer
Shboul, B., Zayed, M. E., Tariq, R., Ashraf, W. M., Odat, A. S., Rehman, S., Abdelrazik, A. S., & Krzywanski, J. (2024). New hybrid photovoltaic-fuel cell system for green hydrogen and power production: Performance optimization assisted with Gaussian process regression method. International Journal of Hydrogen Energy, 59, 1214–1229. https://doi.org/10.1016/j.ijhydene.2024.02.087
Skip, D. (2020). High-Tech Roads Are Powering Electric Cars, Sensors and More. Government Technology. https://www.govtech.com/fs/high-tech-roads-are-powering-electric-cars-sensors-and-more.html
Talib, S. H. A., Hashim, S. I. N. S., Beddu, S., Maidin, A. F., & Abustan, M. S. (2017). Heat lump in different pavement layer using ethylene glycol as a solar heat collector. In MATEC Web of Conferences (Vol. 87, p. 01015). EDP Sciences. https://doi.org/10.1051/matecconf/20178701015
The World Bank Group. (2021). Climatology. https://climateknowledgeportal.worldbank.org/country/saudi-arabia/climate-data-historical
Todd, D. A. (2011). Asphalt Pavement Solar Collectors: The Future is Now. Buildipedia. http://buildipedia.com/aec-pros/engineering-news/asphalt-pavement-solar-collectors-the-future-is-now?print=1&tmpl=component
Tyagi, V. V., Pathak, S. K., Chopra, K., Saxena, A., Kalidasan B., Dwivedi, A., Goel, V., Sharma, R. K., Agrawal, R., Kandil, A. A., Awad, M. M., Kothari, R., & Pandey, A. K. (2024). Sustainable growth of solar drying technologies: Advancing the use of thermal energy storage for domestic and industrial applications. Journal of Energy Storage, 99, Article 113320. https://doi.org/10.1016/j.est.2024.113320
van Bijsterveld, W. T., Houben, L. J. M., Scarpas, A., & Molenaar, A. A. A. (2001). Using pavement as solar collector: Effect on pavement temperature and structural response. Transportation Research Record: Journal of the Transportation Research Board, 1778(1), 140–148. https://doi.org/10.3141/1778-17
Vinod, Kumar, R., & Singh, S. K. (2018). Solar photovoltaic modeling and simulation: As a renewable energy solution. Energy Reports, 4, 701–712. https://doi.org/10.1016/j.egyr.2018.09.008
Xu, L., Wang, J., Xiao, F., EI-Badawy, S., & Awed, A. (2021). Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 281, Article 116077. https://doi.org/10.1016/j.apenergy.2020.116077
Yang, L., Jiang, J., Liu, T., Li, Y., Zhou, Y., & Gao, X. (2018). Projections of future changes in solar radiation in China based on CMIP5 climate models. Global Energy Interconnection, 1(4), 452–459. https://doi.org/10.14171/j.2096-5117.gei.2018.04.005
Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture (pp. 3–28). Elsevier. https://doi.org/10.1016/B978-0-12-819657-1.00001-3
Zaim, E. H., Farzan, H., & Ameri, M. (2020). Assessment of pipe configurations on heat dynamics and performance of pavement solar collectors: An experimental and numerical study. Sustainable Energy Technologies and Assessments, 37, Article 100635. https://doi.org/10.1016/j.seta.2020.100635
Zhou, B., Pei, J., Nasir, D. M., & Zhang, J. (2021). A review on solar pavement and photovoltaic/thermal (PV/T) system. Transportation Research Part D: Transport and Environment, 93, Article 102753. https://doi.org/10.1016/j.trd.2021.102753
Zhou, B., Pei, J., Hughes, B. R., Nasir, D. S. N. M., Vital, B., Pantua, C. A. J., Calautit, J., & Zhang, J. (2021). Structural response analysis of road pavement solar collector (RPSC) with serpentine heat pipes under validated temperature field. Construction and Building Materials, 268, Article 121110. https://doi.org/10.1016/j.conbuildmat.2020.121110
ISSN 0128-7702
e-ISSN 2231-8534
Share this article