PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Pre-Press / JST-5277-2024

 

Thermal and Mechanical Stability of Bismuth Doped Sn-Ag-Cu Lead-free Solder: A Comprehensive Review

Ong Jun Lin, Azmah Hanim Mohamed Ariff, Nuraini Abdul Aziz and Azizan As’arry

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.33.3.04

Keywords: Aging, bismuth, mechanical cycling, micro-alloying, reliability, SAC,­ thermal cycling

Published: 2025-03-26

Expansion in technology urges for better advancement, thus resulting in miniaturization of electronic products with rising concern for the reliability of electronic packaging material. Lead-free solder, being one of the most prominent alternatives in the electronic packaging industry, is constantly exposed to harsh conditions, which are especially exacerbated with smaller solder joints and a closer pitch. Hence, with the effort of attaining a more reliable solder alloy, research has been intensively executed to overcome the hurdle of maximizing the potential of SAC solders. The scope of the review thus focuses on identifying the aptitude of bismuth-doped SAC solders by analyzing their microstructure evolution in isothermal aging while understanding their thermal and mechanical stability in different fatigue tests. In the earlier days, Bismuth was found to realize a better melting point when interacting with the tin matrix due to its unique solid solution-strengthening mechanism. Bismuth-doped solders can also induce a more robust solder joint with smaller IMC particles and a thinner interfacial layer that enables significant improvement in fatigue resistance compared to traditional SAC alloys. Therefore, the review concludes that bismuth-doped SAC solder tends to outshine the conventional alternative as well as offering immense advancement in thermal and mechanical properties, portraying them as a potential alternative for the assembly of high-reliability electronic products, especially in industries with extreme conditions such as aviation, automotive, and military.

  • Abtew, M., & Selvaduray, G. (2000). Lead-free solders in microelectronics. Materials Science and Engineering, 27, 95–141.

    Ahmed, S., Basit, M., Suhling, J. C., & Lall, P. (2016). Effects of aging on SAC-Bi solder materials. In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 746-754). IEEE Publishing. https://doi.org/10.1109/ITHERM.2016.7517621

    Akkara, F. J., Hamasha, S., Alahmer, A., Evans, J., Belhadi, M. E. A., & Wei, X. (2022). The effect of micro-alloying and surface finishes on the thermal cycling reliability of doped SAC solder alloys. Materials, 15(19), Article 6759. https://doi.org/10.3390/ma15196759

    Al Athamneh, R., & Hamasha, S. (2020). Fatigue behavior of SAC-Bi and SAC305 solder joints with aging. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(4), 611–620. https://doi.org/10.1109/TCPMT.2019.2949719

    Ali, H. E., El-Taher, A. M., & Algarni, H. (2024). Influence of bismuth addition on the physical and mechanical properties of low silver/lead-free Sn-Ag-Cu solder. Materials Today Communications, 39, Article 109113. https://doi.org/10.1016/j.mtcomm.2024.109113

    Ali, U., Khan, H., Aamir, M., Giasin, K., Habib, N., & Owais Awan, M. (2021). Analysis of microstructure and mechanical properties of bismuth-doped SAC305 lead-free solder alloy at high temperature. Metals, 11(7), Article 1077. https://doi.org/10.3390/met11071077

    Arfaei, B., Mutuku, F., Coyle, R., Cotts, E., & Wilcox, J. (2015, May). Failure mechanism and microstructural evolution of Pb-free solder alloys in thermal cycling tests: Effect of solder composition and Sn grain morphology. In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (pp. 118-126). IEEE Publishing. https://doi.org/10.1109/ECTC.2015.7159580

    Belhadi, M. E. A., Wei, X., Qasaimeh, Q., Vyas, P., Zhao, R., Hmasha, E., Ali, D., Suhling, J., Hamasha, S., Lall, P., Ali, H., & Prorok, B. C. (2022). Indentation creep properties evolution of lead-free solder joints subjected to thermal cycling. In 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/iTherm54085.2022.9899582

    Belhadi, M. E. A., Wei, X., Vyas, P., Zhao, R., Hamasha, S., Ali, H., Suhling, J., Lall, P., & Prorok, B. C. (2022). Reliability and IMC layer evolution of homogenous lead-free solder joints during thermal cycling. In IPC APEX 2022 Technical Conference Proceedings (pp. 1–14). ResearchGate. https://www.researchgate.net/publication/364722213

    Belhadi, M. E. A., Wentlent, L., Al Athamneh, R., & Hamasha, S. (2019). Mechanical properties of SAC-Bi solder alloys with aging. In Proceedings of SMTA International (pp. 431–438). ResearchGate. https://www.researchgate.net/publication/337439000

    Bhavan, J. S., Pazhani, A., Amer, M., Patel, N., & Unnikrishnan, T. G. (2024). Microstructural evolution and phase transformation on Sn–Ag solder alloys under high-temperature conditions focusing on Ag3Sn phase. Advanced Engineering Materials, 26(13), Article 2400660. https://doi.org/10.1002/adem.202400660

    Borgesen, P., Wentlent, L., Alghoul, T., Sivasubramony, R., Yadav, M., Thekkut, S., Cuevas, J. L. T., & Greene, C. (2019). A mechanistic model of damage evolution in lead free solder joints under combinations of vibration and thermal cycling with varying amplitudes. Microelectronics Reliability, 95, 65–73. https://doi.org/10.1016/j.microrel.2019.02.001

    Cai, C., Xu, J., Wang, H., & Park, S. B. (2021). A comparative study of thermal fatigue life of eutectic Sn-Bi, hybrid Sn-Bi/SAC and SAC solder alloy BGAs. Microelectronics Reliability, 119, Article 114065. https://doi.org/10.1016/j.microrel.2021.114065

    Coyle, R. J., Sweatman, K., & Arfaei, B. (2015). Thermal fatigue evaluation of Pb-free solder joints: Results, lessons learned, and future trends. JOM, 67(10), 2394–2415. https://doi.org/10.1007/s11837-015-1595-1 Darwish, S. M., Al-Habdan, S., & Al-Tamimi, A. (2000). A knowledge-base for electronics soldering. Journal of Materials Processing Technology, 97(1–3), 1–9.

    Dele-Afolabi, T. T., Hanim, M. A. A., Ojo-Kupoluyi, O. J., & Calin, R. (2019). Impact of different isothermal aging conditions on the IMC layer growth and shear strength of MWCNT-reinforced Sn–5Sb solder composites on Cu substrate. Journal of Alloys and Compounds, 808, Article 151714. https://doi.org/10.1016/j.jallcom.2019.151714

    Dele-Afolabi, T. T., Hanim, M. A. A., Calin, R., & Ilyas, R. A. (2020). Microstructure evolution and hardness of MWCNT-reinforced Sn-5Sb/Cu composite solder joints under different thermal aging conditions. Microelectronics Reliability, 110, Article 113681. https://doi.org/10.1016/j.microrel.2020.113681

    Delhaise, A. M., Snugovsky, P., Kennedy, J., Hillman, D., Matijevic, I., Meschter, S., Adams, D., Kammer, M., Romansky, M., Juarez, J., Straznicky, I., Snugovsky, L., Wilcoxon, R., & Perovic, D. D. (2020). Thermal preconditioning and restoration of bismuth-containing, lead-free solder alloys. Journal of Electronic Materials, 49(1), 116–127. https://doi.org/10.1007/s11664-019-07666-w

    Depiver, J. A., Mallik, S., & Harmanto, D. (2021). Solder joint failures under thermo-mechanical loading conditions - A review. In Advances in Materials and Processing Technologies (Vol. 7, Issue 1, pp. 1–26). Taylor and Francis Ltd. https://doi.org/10.1080/2374068X.2020.1751514

    El-Daly, A. A., El-Taher, A. M., & Gouda, S. (2015). Novel Bi-containing Sn-1.5Ag-0.7Cu lead-free solder alloy with further enhanced thermal property and strength for mobile products. Materials and Design, 65, 796–805. https://doi.org/10.1016/j.matdes.2014.10.006

    Gao, Y., Bian, X., Qiu, X., Jia, Y., Yi, J., & Wang, G. (2023). Investigation of microstructure and mechanical properties of SAC105 solders with Sb, In, Ni, and Bi additions. Materials, 16(11), Article 4059. https://doi.org/10.3390/ma16114059

    Graver C. C. C., Yu, C. K., Tina, S., Cherie, C., & Jeffrey, L. (2009). The correlation investigation between cyclic bending and thermal cycling testing in CSP package on board. In 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference (pp. 510-513). IEEE Publishing. https://doi.org/10.1109/IMPACT.2009.5382231

    Haq, M. A., Hoque, M. A., Suhling, J. C., & Lall, P. (2022). Mechanical behavior and microstructure evolution in SAC+Bi lead free solders subjected to mechanical cycling. In 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/iTherm54085.2022.9899538

    Hasan, S. K., Fahim, A., Suhling, J. C., & Lall, P. (2020). Mechanical behavior evolution of SAC+ Bi lead free solder exposed to thermal cycling. In 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1180-1190). IEEE Publishing. https://doi.org/10.1109/ITherm45881.2020.9190579

    Hodúlová, E., Li, H., Šimeková, B., & Kovaříková, I. (2018). Structural analysis of SAC solder with Bi addition. Welding in the World, 62(6), 1311–1322. https://doi.org/10.1007/s40194-018-0629-z

    Hokka, J., Mattila, T. T., Xu, H., & Paulasto-Kröckel, M. (2013). Thermal cycling reliability of Sn-Ag-Cu solder interconnections - PART 2: Failure mechanisms. Journal of Electronic Materials, 42(6), 963–972. https://doi.org/10.1007/s11664-013-2475-5

    Hoque, M. A., Haq, M. A., Suhling, J. C., & Lall, P. (2021). Mechanical behavior and microstructure evolution in lead free solders subjected to mechanical cycling at elevated temperatures. In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) (pp. 2340-2347). IEEE Publishing. https://doi.org/10.1109/ECTC32696.2021.00366

    Jeon, C., Choi, Y., Jeong, H., Seo, K., Rhew, K., Bae, J., & Hwang, Y. (2023). Investigation of acceleration factors for SnAgCu-Bi solder Joints under various temperature cycling test conditions. In 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC) (pp. 846-851). IEEE Publishing. https://doi.org/10.1109/ECTC51909.2023.00146

    Jian, M., Hamasha, S., Alahmer, A., Hamasha, M., Wei, X., Belhadi, M. E. A., & Hamasha, K. (2023). Analysis and modeling of aged SAC-Bi solder joints subjected to varying stress cycling conditions. Materials, 16(2), Article 0750. https://doi.org/10.3390/ma16020750

    Jian, M., Hamasha, S., Alahmer, A., Wei, X., Belhadi, M. E. A., Alakayleh, A., & Tahat, S. (2023). Shear fatigue analysis of SAC-Bi solder joint exposed to varying stress cycling conditions. IEEE Transactions on Components, Packaging and Manufacturing Technology, 13(2), 274–283. https://doi.org/10.1109/TCPMT.2023.3240367

    Kaimkuriya, A., Sethuraman, B., & Gupta, M. (2024). Effect of physical parameters on fatigue life of materials and alloys: A critical review. Technologies, 12(7), Article 100. https://doi.org/10.3390/technologies12070100

    Kanchanomai, C., Miyashita, Y., & Mutoh, Y. (2002). Low-cycle fatigue behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi lead-free solders. Journal of Electronic Materials, 31, 456–465.

    Kanlayasiri, K., & Sukpimai, K. (2016). Effects of indium on the intermetallic layer between low-Ag SAC0307-xIn lead-free solders and Cu substrate. Journal of Alloys and Compounds, 668, 169–175. https://doi.org/10.1016/j.jallcom.2016.01.231

    Li, G. Y., & Shi, X. Q. (2006). Science press effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints. Transactions of Nonferrous Metals Society of China, 16, s739-s743. https://doi.org/10.1016/S1003-6326(06)60292-6

    Li, M. L., Zhang, L., Jiang, N., Zhang, L., & Zhong, S. J. (2021). Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review. Materials & Design, 197, Article 109224. https://doi.org/10.1016/j.matdes.2020.109224

    Libot, J. B., Alexis, J., Dalverny, O., Arnaud, L., Milesi, P., & Dulondel, F. (2018). Microstructural evolutions of Sn-3.0Ag-0.5Cu solder joints during thermal cycling. Microelectronics Reliability, 83, 64–76. https://doi.org/10.1016/j.microrel.2018.02.009

    Liu, V., Zou, Y. S., Chen, Y. Y., Chang, W. L., Foo, X. Q., Chen, Y. J., Chen, C. M., Chung, M. H., & Gan, C. L. (2024). Solder joint reliability performance study and shear characterization of low-Ag SAC lead-free solders for handheld application. Materials Science in Semiconductor Processing, 179, Article 108489. https://doi.org/10.1016/j.mssp.2024.108489

    Mahdavifard, M. H., Sabri, M. F. M., Shnawah, D. A., Said, S. M., Badruddin, I. A., & Rozali, S. (2015). The effect of iron and bismuth addition on the microstructural, mechanical, and thermal properties of Sn-1Ag-0.5Cu solder alloy. Microelectronics Reliability, 55(9–10), 1886–1890. https://doi.org/10.1016/j.microrel.2015.06.134

    Maruf, M. A., Mazumder, G. R., Chakraborty, S., Suhling, J. C., & Lall, P. (2024). Effects of combined isothermal aging and mechanical cycling exposures on the mechanical behavior of lead-free solder alloys. In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/ITherm55375.2024.10709399

    Miao, Y., Dong, T., Li, C., Yang, J., Lu, Q., Xu, Z., Zhang, X., Peng, J., & Yi, J. (2024). Effects of Sb on the properties and interfacial evolution of SAC305-2Bi-xSb/Cu solder joints. Journal of Materials Research and Technology, 30, 9494–9502. https://doi.org/10.1016/j.jmrt.2024.06.023

    Ramli, M. I. I., Salleh, M. A. A. M., Abdullah, M. M. A. B., Zaimi, N. S. M., Sandu, A. V., Vizureanu, P., Rylski, A., & Amli, S. F. M. (2022). Formation and growth of intermetallic compounds in lead-free solder joints: A review. Materials, 15(4), Article 1451. https://doi.org/10.3390/ma15041451

    Ren X. L., Wang, Y. P., Lai, Y. Q., Shi, S. Y., Liu, X. Y., Zou, L. J., & Zhao, N. (2023). Effects of in addition on microstructure and properties of SAC305 solder. Transactions of Nonferrous Metals Society of China (English Edition), 33(11), 3427–3438. https://doi.org/10.1016/S1003-6326(23)66344-7

    Rizvi, M. J., Chan, Y. C., Bailey, C., Lu, H., & Islam, M. N. (2006). Effect of adding 1 wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging. Journal of Alloys and Compounds, 407(1–2), 208–214. https://doi.org/10.1016/j.jallcom.2005.06.050

    Romdhane, E. B., Roumanille, P., Guedon-Gracia, A., Pin, S., Nguyen, P., & Fremont, H. (2022). QFN (Quad Flat No-lead) SAC solder joints under thermal cycling: Identification of two failure mechanisms. In 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC) (pp. 716-722). IEEE Publishing. https://doi.org/10.1109/ECTC51906.2022.00120

    Shen, Y. A., Zhou, S., Li, J., Yang, C. H., Huang, S., Lin, S. K., & Nishikawa, H. (2019). Sn-3.0Ag-0.5Cu/Sn-58Bi composite solder joint assembled using a low-temperature reflow process for PoP technology. Materials and Design, 183, Article 108144. https://doi.org/10.1016/j.matdes.2019.108144

    Sivakumar, P., O’Donnell, K., & Cho, J. (2021). Effects of bismuth and nickel on the microstructure evolution of Sn-Ag-Cu (SAC)-based solders. Materials Today Communications, 26, Article 101787. https://doi.org/10.1016/j.mtcomm.2020.101787

    Su, S., Jian, M., & Hamasha, S. (2020). Effects of surface finish on the shear fatigue of SAC-based solder alloys. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(3), 457–466. https://doi.org/10.1109/TCPMT.2019.2942806

    Swanson, T. J., & Anselm, M. K. (2023). Properties of mixing SAC solder alloys with bismuth-containing solder alloys for a low reflow temperature process. Journal of Surface Mount Technology, 36(3), 25-34. https://doi.org/10.37665/smt.v36i3.6

    Tarman, W., Alahmer, A., Bolanos, S., Pouya, S., Alakayleh, A., El Amine Belhadi, M., & Hamasha, S. (2024). Evaluating shear properties of individual solder joints in ball grid arrays: The impact of silver (Ag) and bismuth (Bi) content. In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/ITherm55375.2024.10709615

    Tian, R., Wang, C., Huang, Y., & Guo, X. (2022). Effects of nanoparticle addition on the reliability of Sn-based Pb-free solder joints under various conditions: A review. Nano, 18(01), Article 2330001. https://doi.org/10.1142/S1793292023300013

    Vandevelde, B., Vanhee, F., Pissoort, D., Degrendele, L., De Baets, J., Allaert, B., Lauwaert, R., Zanon, F., Labie, R., & Willems, G. (2017). Four-point bending cycling: The alternative for thermal cycling solder fatigue testing of electronic components. Microelectronics Reliability, 74, 131–135. https://doi.org/10.1016/j.microrel.2017.04.008

    Wang, J., Ye, Y., Zhao, J., Liu, S., Tu, Y., Li, S., & Song, Z. (2009). Assessment of LF solder joint reliability by four point cyclic bending. In 2009 International Conference on Electronic Packaging Technology & High Density Packaging (pp. 572-576). IEEE Publishing. https://doi.org/10.1109/ICEPT.2009.5270686

    Wang, W., Chen, Z., Wang, S., & Long, X. (2020). Mechanics-based acceleration for estimating thermal fatigue life of electronic packaging structure. Microelectronics Reliability, 107, Article 113616. https://doi.org/10.1016/j.microrel.2020.113616

    Wu, J., Ahmed, S., Suhling, J. C., & Lall, P. (2019). Investigation of aging induced microstructural changes in doped SAC+ X solders. In 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 405-415). IEEE Publishing. https://doi.org/10.1109/ITHERM.2019.8756501

    Wu, J., Hassan, K. M. R., Alam, M. S., Suhling, J. C., & Lall, P. (2021). Investigation and comparison of aging effects in SAC+Bi solders exposed to high temperatures. In 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (pp. 492-503). IEEE Publishing. https://doi.org/10.1109/ITherm51669.2021.9503187

    Yang, T., Chen, Y., You, K., Dong, Z., Jia, Y., Wang, G., Peng, J., Cai, S., Luo, X., Liu, C., & Wang, J. (2022). Effect of Bi, Sb, and Ti on microstructure and mechanical properties of SAC105 alloys. Materials, 15(14), Article 4727. https://doi.org/10.3390/ma15144727

    Zhang, H., Ma, Z., Yang, S., Fan, M., & Cheng, X. (2023). Microstructure and mechanical properties of Sn-xGa alloys and solder joints. Journal of Materials Research and Technology, 26, 3830–3839. https://doi.org/10.1016/j.jmrt.2023.08.151

    Zhang, S., Qiu, Q., Ding, T., Long, W., Zhong, S., Paik, K. W., He, P., & Zhang, S. (2024). Investigation of isothermal aged Sn-3Ag-0.5Cu/Sn58Bi-Co hybrid solder joints on ENIG and ENEPIG substrate with various mechanical performances. Materials Today Communications, 39, Article 108609. https://doi.org/10.1016/j.mtcomm.2024.108609

    Zhao, J., Cheng, C. qian, Qi, L., & Chi, C. yu. (2009). Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples. Journal of Alloys and Compounds, 473(1–2), 382–388. https://doi.org/10.1016/j.jallcom.2008.05.082

    Zhong, S. J., Zhang, L., Li, M. L., Long, W. M., & Wang, F. J. (2022). Development of lead-free interconnection materials in electronic industry during the past decades: Structure and properties. Materials and Design, 215, 110439. https://doi.org/10.1016/j.matdes.2022.110439

    Zou, Y. S., Chung, M. H., Gan, C. L., Hsu, Y. T., & Takiar, H. (2021). Effects of Sb and Bi addition on IMC morphology and reliability of Pb-free solder/Cu-OSP. In 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC) (pp. 419-422). IEEE Publishing. https://doi.org/10.1109/EPTC53413.2021.9663897

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-5277-2024

Download Full Article PDF

Share this article

Related Articles