e-ISSN 2231-8526
ISSN 0128-7680
Nur Azuan Husin, Ray Clement Ridu, Normahnani Md Noh and Siti Khairunniza Bejo
Pertanika Journal of Science & Technology, Pre-Press
DOI: https://doi.org/10.47836/pjst.33.3.03
Keywords: Ganoderma boninense, height, infected oil palms, point clouds, stem diameter
Published: 2025-03-26
The most threatening disease to the oil palm is Basal Stem Rot (BSR) disease caused by Ganoderma boninense. Besides matured oil palm trees, palm seedlings are susceptible to BSR disease. Therefore, it is crucial to detect the symptoms of the disease at an early stage so that the infected plants can be treated immediately. This study focuses on growth monitoring to differentiate between the infected (INF) seedlings and non-infected (NONF) seedlings by using ground-based LiDAR. This study used one hundred INF seedlings and 20 NONF seedlings, where the NONF seedlings acted as a control. The parameters measured using LiDAR were the height, stem diameter, and point density of the seedlings, which were measured four times every two-week intervals. The results showed significant differences in mean height and mean stem diameter between INF and NONF seedlings. Results from the LiDAR measurements were consistent with the manual measurements, with more than 86% correlations. In temporal measurements, the mean stem diameter for NONF seedlings consistently increased over the six weeks, while for INF seedlings, it was inconsistent throughout the time. Furthermore, in the last three measurements, the mean point density of NONF seedlings was higher than that of INF seedlings, which indicated better growth of non-infected seedlings than infected seedlings.
Akul, Y., Kumar, V., & Chong, K. P. (2018). Designing primers for loop-mediated isothermal amplification (LAMP) for detection of Ganoderma boninense. Bulgarian Journal of Agricultural Science, 24(5), 854-859.
Azahar, T. M., Mustapha, J. C., Mazliham, S., & Boursier, P. (2011). Temporal analysis of basal stem rot disease in oil palm plantations: An analysis on peat soil. International Journal of Engineering & Technology, 11(3), 96–101.
Azmi, A. N. N., Bejo, S. K., Jahari, M., Muharam, F. M., Yule, I., & Husin, N. A. (2020). Early detection of Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12(23), Article 3920. https://doi.org/10.3390/rs12233920
Azmi, A. N. N., Khairunniza-Bejo, S., Jahari, M., Muharram, F. M., & Yule, I. (2021). Identification of a suitable machine learning model for detection of asymptomatic Ganoderma boninense infection in oil palm seedlings using hyperspectral data. Applied Sciences, 11(24), Article 11798. https://doi.org/10.3390/app112411798
Azuan, N. H., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S. M., & Ahmad, D. (2019). Analysis of changes in oil palm canopy architecture from basal stem rot using terrestrial laser scanner. Plant Disease, 103(12), 3218-3225. https://doi.org/10.1094/PDIS-10-18-1721-RE
Bharudin, I., Wahab, A. F. F. A., Samad, M. A. A., Yie, N. X., Zairun, M. A., Bakar, F. D. A., & Murad, A. M. A. (2022). Review update on the life cycle, plant–microbe interaction, genomics, detection and control strategies of the oil palm pathogen Ganoderma boninense. Biology, 11(2), Article 251. https://doi.org/10.3390/biology11020251
Bornaz, L., & Rinaudo, F. (2004). Terrestrial laser scanner data processing. XXth ISPRS Congress Istanbul, 123(123006), 1–4.
Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics. Sensors, 21(6), Article 2129. https://doi.org/10.3390/s21062129
Cabo, C., Ordóñez, C., López-Sánchez, C. A., & Armesto, J. (2018). Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 69, 164-174.
Fahey, T., Pham, H., Gardi, A., Sabatini, R., Stefanelli, D., Goodwin, I., & Lamb, D. W. (2020). Active and passive electro-optical sensors for health assessment in food crops. Sensors, 21(1), Article 171. https://doi.org/10.3390/s21010171
Faizah, R., Putranto, R. A., Raharti, V. R., Supena, N., Sukma, D., Budiani, A., Wening, S., & Sudarsono, S. (2022). Defense response changes in roots of oil palm (Elaeis guineensis Jacq.) seedlings after internal symptoms of Ganoderma boninense Pat. infection. BMC Plant Biology, 22(1), Article 139. https://doi.org/10.1186/s12870-022-03493-0
Farraji, H., Dahlan, I., & Eslamian, S. (2021). Water recycling from palm oil mill effluent. In S. Eslamian (Ed.), Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals (pp. 307-320). John Wiley & Sons. https://doi.org/10.1002/9781119478911.ch20
Girardeau-Montaut, D. (2016). CloudCompare - Point Cloud Processing Workshop. EDF R&D Telecom ParisTech. https://www.eurosdr.net/sites/default/files/images/inline/04-cloudcompare_pcp_2019_public.pdf
Gregorio, E., & Llorens, J. (2021). Sensing crop geometry and structure. In R. Kerry & A. Escolà (Eds.), Sensing Approaches for Precision Agriculture (pp. 59-92). Springer. https://doi.org/10.1007/978-3-030-78431-7_3
Hillman, S., Wallace, L., Reinke, K., & Jones, S. (2021). A comparison between TLS and UAS LiDAR to represent eucalypt crown fuel characteristics. ISPRS Journal of Photogrammetry and Remote Sensing, 181, 295-307. https://doi.org/10.1016/j.isprsjprs.2021.09.008
Hilmi, N. H. Z., Idris, A. S., Maizatul-Suriza, M., Madihah, A. Z., & Nur-Rashyeda, R. (2022). Molecular PCR assays for detection of Ganoderma pathogenic to oil palm in Malaysia. Malaysian Applied Biology, 51(1), 171-182. https://doi.org/10.55230/mabjournal.v51i1.2201
Hosoi, F., & Omasa, K. (2009). Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 151-158. https://doi.org/10.1016/j.isprsjprs.2008.09.003
Huijser, P., & Schmid, M. (2011). The control of developmental phase transitions in plants. Development, 138(19), 4117-4129. https://doi.org/10.1242/dev.063511
Husin, N. A., Bejo, S. K., Abdullah, A. F., Kassim, M. S., & Ahmad, D. (2021). Relationship of oil palm crown features extracted using terrestrial laser scanning for basal stem rot disease classification. Basrah Journal of Agricultural Sciences, 34, 1-10. https://doi.org/10.37077/25200860.2021.34.sp1.1
Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., Ahmad, D., & Aziz, M. H. (2020a). Classification of basal stem rot disease in oil palm plantations using terrestrial laser scanning data and machine learning. Agronomy, 10(11), Article 1624. https://doi.org/10.3390/agronomy10111624
Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., Ahmad, D., & Azmi, A. N. (2020b). Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of basal stem rot (BSR) disease. Scientific Reports, 10(1), Article 6464. https://doi.org/s41598-020-62275-6
Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., & Ahmad, D. (2022). Multi-temporal analysis of terrestrial laser scanning data to detect basal stem rot in oil palm trees. Precision Agriculture, 23(1), 101-126. https://doi.org/10.1007/s11119-021-09829-4
Husin, N. A., Khairunniza–Bejo, S., Abdullah, A. F., Kassim, M. S. M., & Ahmad, D. (2020c). Study of the oil palm crown characteristics associated with Basal Stem Rot (BSR) disease using stratification method of point cloud data. Computers and Electronics in Agriculture, 178, Article 105810. https://doi.org/10.1016/j.compag.2020.105810
Johnson, M., & Liscio, E. (2015). Suspect height estimation using the Faro Focus3D laser scanner. Journal of Forensic Sciences, 60(6), 1582-1588. https://doi.org/10.1111/1556-4029.12829
Khairunniza-Bejo, S., Shahibullah, M. S., Azmi, A. N. N., & Jahari, M. (2021). Non-destructive detection of asymptomatic Ganoderma boninense infection of oil palm seedlings using NIR-hyperspectral data and support vector machine. Applied Sciences, 11(22), Article 10878. https://doi.org/10.3390/app112210878
Li, Z., Yu, T., Paul, R., Fan, J., Yang, Y., & Wei, Q. (2020). Agricultural nanodiagnostics for plant diseases: Recent advances and challenges. Nanoscale Advances, 2(8), 3083-3094. https://doi.org/10.1039/C9NA00724E
Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., & Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006
Liu, G., Wang, J., Dong, P., Chen, Y., & Liu, Z. (2018). Estimating individual tree height and diameter at breast height (DBH) from terrestrial laser scanning (TLS) data at plot level. Forests, 9(7), Article 398. https://doi.org/10.3390/f9070398
Lumme, J., Karjalainen, M., Kaartinen, H., Kukko, A., Hyyppä, J., Hyyppä, H., Jaakkola, A., & Kleemola, J. (2008). Terrestrial laser scanning of agricultural crops. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 563-566.
Maas, H. G., Bienert, A., Scheller, S., & Keane, E. (2008). Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579-1593. https://doi.org/10.1080/01431160701736406
Madihah, A. Z., Idris, A. S., & Rafidah, A. R. (2014). Polyclonal antibodies of Ganoderma boninense isolated from Malaysian oil palm for detection of basal stem rot disease. African Journal of Biotechnology, 13(34), 3455-3463. https://doi.org/10.5897/AJB2013.13604
Madihah, A. Z., Maizatul-Suriza, M., Idris, A. S., Bakar, M. F. A., Kamaruddin, S., Bharudin, I., Bakar, F. D. A., & Murad, A. M. A. (2018). Comparison of DNA extraction and detection of Ganoderma, causal of basal stem rot disease in oil palm using loop-mediated isothermal amplification. Malaysian Applied Biology, 47(5), 119-127.
Naidu, Y., Siddiqui, Y., Rafii, M. Y., Saud, H. M., & Idris, A. S. (2018). Inoculation of oil palm seedlings in Malaysia with white-rot hymenomycetes: Assessment of pathogenicity and vegetative growth. Crop Protection, 110, 146-154. https://doi.org/10.1016/j.cropro.2018.02.018
Parveez, G. K. A., Kamil, N. N., Zawawi, N. Z., Ong-Abdullah, M., Rasuddin, R., Loh, S. K., Selvaduray, K. R., Hoong, S. S., & Idris, Z. (2022). Oil palm economic performance in Malaysia and R&D progress in 2021. Journal of Oil Palm Research, 34(2), 185-218. https://doi.org/10.21894/jopr.2022.0036
Pitkänen, T. P., Raumonen, P., Liang, X., Lehtomäki, M., & Kangas, A. (2021). Improving TLS-based stem volume estimates by field measurements. Computers and Electronics in Agriculture, 180, Article 105882. https://doi.org/10.1016/j.compag.2020.105882
Rees, R. W., Flood, J., Hasan, Y., Potter, U., & Cooper, R. M. (2009). Basal stem rot of oil palm (Elaeis guineensis); Mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathology, 58(5), 982-989. https://doi.org/0.1111/j.1365-3059.2009.02100.x
Rosette, J., Suárez, J., Nelson, R., Los, S., Cook, B., & North, P. (2012). Lidar remote sensing for biomass assessment. Remote Sensing of Biomass—Principles and Applications, 24, 3-27. https://doi.org/10.5772/17479
Sanderson, F. R. (2005). An insight into spore dispersal of Ganoderma boninense on oil palm. Mycopathologia, 159(1), 139-141. https://doi.org/10.1007/s11046-004-4436-2
Santoso, H., Gunawan, T., Jatmiko, R. H., Darmosarkoro, W., & Minasny, B. (2011). Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precision Agriculture, 12(2), 233–248. https://doi.org/10.1007/s11119-010- 9172-7
Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48(1), 21-43. https://doi.org/10.1146/annurev-phyto-073009-114450
Stovall, A. E., Anderson-Teixeira, K. J., & Shugart, H. H. (2018). Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecology and Management, 427, 217-229. https://doi.org/10.1016/j.foreco.2018.06.004
Surendran, A., Siddiqui, Y., Saud, H. M., & Manickam, N. S. A. A. S. (2017). The antagonistic effect of phenolic compounds on ligninolytic and cellulolytic enzymes of Ganoderma boninense, causing basal stem rot in oil palm. International Journal of Agriculture & Biology, 19, 1437-1446. https://doi.org/10.17957/IJAB/15.0439
Wagers, S., Castilla, G., Filiatrault, M., & Sanchez-Azofeifa, G. A. (2021). Using TLS-measured tree attributes to estimate aboveground biomass in small black spruce trees. Forests, 12(11), Article 1521. https://doi.org/10.3390/f12111521
Yap, P., Rosdin, R., Abdul-Rahman, A. A. A., Omar, A. T., Mohamed, M. N., & Rahami, M. S. (2021). Malaysian sustainable palm oil (MSPO) certification progress for independent smallholders in Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 736, No. 1, p. 012071). IOP Publishing. https://doi.org/10.1088/1755-1315/736/1/012071
Zevgolis, Y. G., Alsamail, M. Z., Akriotis, T., Dimitrakopoulos, P. G., & Troumbis, A. Y. (2022). Detecting, quantifying, and mapping urban trees’ structural defects using infrared thermography: Implications for tree risk assessment and management. Urban Forestry & Urban Greening, 75, Article 127691. https://doi.org/10.1016/j.ufug.2022.127691
ISSN 0128-7702
e-ISSN 2231-8534
Share this article