PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Pre-Press / JST-5245-2024

 

Effective Vibration-Based Anomaly Detection in Water Pump Operation Using Arduino Microcontroller

Azahar Mohd, Khairil Anas Md Rezali, Sharafiz Abdul Rahim, Mohammad Yazdi Harmin, Abdul Murad Zainal Abidin and Mohamad Fikri Mohamad Yunus

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.33.2.09

Keywords: ADXL accelerometer, Arduino microcontroller, vibration monitoring, water pump anomalies

Published: 2025-02-21

Arduino microcontroller and ADXL accelerometer are commonly paired devices, often considered for creating inexpensive vibration analysers. Many researchers have proven that both pairing devices have good performance in vibration measurement and have the potential for commercialisation. This study evaluates the feasibility of vibration measurement and monitoring using an Arduino microcontroller with an inexpensive accelerometer in detecting anomalies during water pump operation. A dedicated Arduino Mega and an ADXL345 accelerometer were attached to a water pump motor to facilitate continuous monitoring of vibrations. The vibration measurement was set at a sampling rate of 530 Hz. Vibration data in RMS value was sent to the cloud storage for monitoring. Raw data captured during normal and abnormal conditions were collected at the site when anomalies were detected for further analysis. The results showed that the abnormal conditions could be clearly differentiated from normal conditions using the Fast Fourier Transform method and spectrogram analysis. In summary, this study confirms that integrating the Arduino Microcontroller with the ADXL accelerometer effectively detects irregularities in the operating conditions of the water pump.

  • Abdulaziz, A. M., & Kotb, A. (2017). Detection of pump cavitation by vibration signature. Australian Journal of Mechanical Engineering, 15(2), 103–110. https://doi.org/10.1080/14484846.2015.1093261

    Adeodu, A., Daniyan, I., Omitola, O., Ejimuda, C., Agbor, E., & Akinola, O. (2020). An adaptive industrial internet of things (IIoTs) based technology for prediction and control of cavitation in centrifugal pumps. Procedia CIRP, 91, 927–934. https://doi.org/10.1016/j.procir.2020.03.125

    Adli, B., & Rusmin, P. H. (2020). Vibration measuring tools for rotary pumping machine with accelerometer MEMS sensor. In 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE) (pp. 69-74). IEEE Publishing. https://doi.org/10.1109/FORTEI-ICEE50915.2020.9249860

    Agnoletti, L., Pedotti, S., Zago, R. M., Giesbrecht, M., & Fruett, F. (2020). Low-cost MEMS accelerometer network for rotating machine vibration diagnostics analyzing machine vibration. IEEE Instrumentation & Measurement Magazine, 23(7), 25-33. https://doi.org/10.1109/MIM.2020.9234762

    Al-Haddad, L. A., Jaber, A. A., Hamzah, M. N., & Fayad, M. A. (2024). Vibration-current data fusion and gradient boosting classifier for enhanced stator fault diagnosis in three-phase permanent magnet synchronous motors. Electrical Engineering, 106(3), 3253–3268. https://doi.org/10.1007/s00202-023-02148-z

    Altherr, L. C., Leise, P., Pfetsch, M. E., & Schmitt, A. (2019). Resilient layout, design and operation of energy-efficient water distribution networks for high-rise buildings using MINLP. Optimization and Engineering, 20(2), 605–645. https://doi.org/10.1007/s11081-019-09423-8

    ALTobi, M. A. S., Bevan, G., Wallace, P., Harrison, D., & Ramachandran, K. P. (2019). Centrifugal pump condition monitoring and diagnosis using frequency domain analysis. In Applied Condition Monitoring (Vol. 15, pp. 122–131). Springer. https://doi.org/10.1007/978-3-030-11220-2_13

    Arunraj, N. S., & Maiti, J. (2007). Risk-based maintenance-Techniques and applications. Journal of Hazardous Materials, 142(3), 653–661. https://doi.org/10.1016/j.jhazmat.2006.06.069

    Bai, L., Zhou, L., Jiang, X., Pang, Q., & Ye, D. (2019). Vibration in a multistage centrifugal pump under varied conditions. Shock and Vibration, 2019, 1–9. https://doi.org/10.1155/2019/2057031

    Chen, L., Wei, L., Wang, Y., Wang, J., & Li, W. (2022). Monitoring and predictive maintenance of centrifugal pumps based on smart sensors. Sensors, 22(6), Article 2106. https://doi.org/10.3390/s22062106

    Dutta, N., Kaliannan, P., & Subramaniam, U. (2020). Effect of motor vibration problems on power quality of water pumping at residency. IOP Conference Series: Materials Science and Engineering, 937(1), Article 012019. https://doi.org/10.1088/1757-899X/937/1/012019

    Ejimuda, C. (2020). Development and prediction of cavitation in centrifugal pumps using industrial internet of things technology. In SPE Nigeria Annual International Conference and Exhibition (p. D013S006R012). SPE Publishing. https://doi.org/10.2118/203661-MS

    Feng, G. J., Gu, J., Zhen, D., Aliwan, M., Gu, F. S., & Ball, A. D. (2015). Implementation of envelope analysis on a wireless condition monitoring system for bearing fault diagnosis. International Journal of Automation and Computing, 12(1), 14–24. https://doi.org/10.1007/s11633-014-0862-x

    Guimarães, T. A., & de Oliveira Filho, R. H. (2021). Analysis of vibration signals produced by the cavitation in centrifugal pumps using the Power Spectrum and Continuous Wavelet Transform. Revista Brasileira de Ciência, Tecnologia e Inovação, 5(1), 1-12. https://doi.org/10.18554/rbcti.v5i1.3413

    Hajnayeb, A., Azizi, R., Ghanbarzadeh, A., & Changizian, M. (2017). Vibration-based cavitation detection in centrifugal pumps. Diagnostyka, 18(3), 77–83.

    Hasibuzzaman, M., Shufian, A., Shefa, R. K., Raihan, R., Ghosh, J., & Sarker, A. (2020). Vibration measurement & analysis using arduino based accelerometer. In 2020 IEEE Region 10 Symposium (TENSYMP) (pp. 508-512). IEEE Publishing. https://doi.org/10.1109/TENSYMP50017.2020.9230668

    Jaber, A. A., & Bicker, R. (2017). Wireless fault detection system for an industrial robot based on statistical control chart. International Journal of Electrical and Computer Engineering, 7(6), 3421–3435. https://doi.org/10.11591/ijece.v7i6.pp3421-3435

    Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510. https://doi.org/10.1016/j.ymssp.2005.09.012

    Kafeel, A., Aziz, S., Awais, M., Khan, M. A., Afaq, K., Idris, S. A., Alshazly, H., & Mostafa, S. M. (2021). An expert system for rotating machine fault detection using vibration signal analysis. Sensors, 21(22), Article 7587. https://doi.org/10.3390/s21227587

    Karagiovanidis, M., Pantazi, X. E., Papamichail, D., & Fragos, V. (2023). Early detection of cavitation in centrifugal pumps using low-cost vibration and sound sensors. Agriculture, 13(8), Article 1544. https://doi.org/10.3390/agriculture13081544

    Kiliç, R., Kozan, R., Karayel, D., & Özkan, S. S. (2017). Application of predictive maintenance system in drinking water pumping stations. Acta Physica Polonica A, 132(3), 1016–1021. https://doi.org/10.12693/APhysPolA.132.1016

    Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, Article 100364. https://doi.org/10.1016/j.cosrev.2021.100364

    Krishnachandran, Samson, A., & Rajan, A. (2020). Condition monitoring of cavitation-induced centrifugal pump. In A. Suryan, D. H. Doh, M. Yaga & G. Zhang (Eds.), Recent Asian Research on Thermal and Fluid Sciences (pp. 393–408). Springer. https://doi.org/10.1007/978-981-15-1892-8_31

    Lee, C. Y., & Le, T. A. (2020). Intelligence bearing fault diagnosis model using multiple feature extraction and binary particle swarm optimization with extended memory. IEEE Access, 8, 198343–198356. https://doi.org/10.1109/ACCESS.2020.3035081

    Lourenço, M., Silva-Afonso, A., & Pimentel-Rodrigues, C. (2022). Performance indicators for water supply in buildings. WSEAS Transactions on Environment and Development, 18, 1115–1128. https://doi.org/10.37394/232015.2022.18.106

    Midiani, L. P. I., Irawan, I. M. D., Bangse, K., & Gunung, I. N. (2023). Design of clean water booster pump for high-rise buildings. LOGIC: Jurnal Rancang Bangun Dan Teknologi, 23(3), 203–211. https://doi.org/10.31940/logic.v23i3.203-211

    Mones, Z., Feng, G., Ogbulaor, U. E., Wang, T., Gu, F., & Ball, A. D. (2016). Performance evaluation of wireless MEMS accelerometer for reciprocating compressor condition monitoring. In Power Engineering: Proceedings of the International Conference on Power Transmissions 2016 (ICPT 2016) (pp. 893-900). Taylor & Francis. https://doi.org/10.1201/9781315386829-129

    Ogaili, A. A. F., Jaber, A. A., & Hamzah, M. N. (2023). Wind turbine blades fault diagnosis based on vibration dataset analysis. Data in Brief, 49, Article 109414. https://doi.org/10.1016/j.dib.2023.109414

    Pan, T., & Zhu, Y. (2018). Getting started with Arduino. In T. Pan & Y. Zhu (Eds.), Designing Embedded Systems with Arduino (pp. 3–16). Springer. https://doi.org/10.1007/978-981-10-4418-2_1

    Rezali, K. A. M., Rahim, S. A., Hassan, A. B. M., Abidin, A. M. Z., Khalid, S. N. A., & Mohd, A. B. (2022, July 24-28). Development of an Arduino data acquisition system for condition-based monitoring [Paper Presentation]. Proceedings of the International Congress on Sound and Vibration, 28th International Congress on Sound and Vibration, ICSV, Singapore.

    Smith, R., & Hawkins, B. (2004). Lean maintenance: Reduce costs, improve quality, and increase market share. Elsevier. Sainz-Raso, J., Martin, S., Diaz, G., & Castro, M. (2023). Security management on arduino-based electronic devices. IEEE Consumer Electronics Magazine, 12(3), 72–84. https://doi.org/10.1109/MCE.2022.3184118

    Sanchez, W., Carvajal, C., Poalacin, J., & Salazar, E. (2018). Detection of cavitation in centrifugal pump for vibration analysis. In 2018 4th International Conference on Control, Automation and Robotics (ICCAR) (pp. 460-464). IEEE Publishing. https://doi.org/10.1109/ICCAR.2018.8384720

    Shibnauth, V. D., & Surnam, B. Y. R. (2015, April 20-21). Issues affecting water distribution systems [Paper Presentation]. International Conference on Computer Science, Data Mining & Mechanical Engineering (ICCDMME), Bangkok, Thailand. https://doi.org/10.15242/IIE.E0415025

    Sun, H., Yuan, S., & Luo, Y. (2018). Cyclic spectral analysis of vibration signals for centrifugal pump fault characterization. IEEE Sensors Journal, 18(7), 2925–2933. https://doi.org/10.1109/JSEN.2018.2804908

    Sunal, C. E., Dyo, V., & Velisavljevic, V. (2022). Review of machine learning based fault detection for centrifugal pump induction motors. IEEE Access, 10, 71344–71355. https://doi.org/10.1109/ACCESS.2022.3187718

    Tian, Q., Lin, C., Hu, R., Ya, C., & Xu, S. (2022). Numerical and experimental investigations on cavitation characteristics of inducer and impeller combination fuel pumps. In CSAA/IET International Conference on Aircraft Utility Systems (AUS 2022) (Vol. 2022, pp. 1369-1376). IET Publishing. https://doi.org/https://doi.org/10.1049/icp.2022.1872

    Van Der Schee, W. G. (2009, September 7-9). Water systems in high rise residential buildings, guidelines for design and construction. [Paper Presentation]. The 35th International Symposium CIB W062 on Water Supply and Drainage for Buildings, Düsseldorf, Germany.

    Yehl, C. C., Member, S., Sizovl, G. Y., Sayed-Ahmed, A., Povinellil, R. J., Member, S., Yazl, E. E., & Ionel, D. M. (2008). A reconfigurable motor for experimental emulation of stator winding inter-turn and broken bar faults in polyphase induction machines. IEEE Transactions on Energy Conversion, 23(2), 1005–1014. https://doi.org/10.1109/TEC.2007.914201

    Zhou, J., Li, X., Andernroomer, A. J., Zeng, H., Goh, K. M., Wong, Y. S., & Hong, G. S. (2005). Intelligent prediction monitoring system for predictive maintenance in manufacturing. In 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005 (pp. 6-pp). IEEE Publishing. https://doi.org/10.1109/IECON.2005.1569264

    Zhou, Y., Lee, E. W. M., Wong, L. T., & Mui, K. W. (2021). Environmental evaluation of pump replacement period in water supply systems of buildings. Journal of Building Engineering, 40, Article 102750. https://doi.org/10.1016/j.jobe.2021.102750

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-5245-2024

Download Full Article PDF

Share this article

Related Articles