PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / JSSH Vol. 47 (4) Nov. 2024 / JTAS-2954-2023

 

Effects of Treatments and Fermentation Time on Phenolic Compounds, Glycoalkaloid Contents, and Antioxidant Capacity of Industrial Potato Waste

Muhammad Surajo Afaka, Iswan Budy Suyub, Frisco Nobilly and Halimatun Yaakub

Pertanika Journal of Social Science and Humanities, Volume 47, Issue 4, November 2024

DOI: https://doi.org/10.47836/pjtas.47.4.16

Keywords: Antioxidants, fermentation, glycoalkaloids, phytochemical compounds, potato waste

Published on: 29 November 2024

Potato processing plants generate waste in the form of peels, pulp, and rejects, which is estimated to be around 12–20 % of their total production volume. Potato peels, pulp, and unmarketable potatoes can be processed and incorporated into animal feed formulations. However, there is a limited information on phenolic compounds from industrial potato waste (IPW) subjected to short-term solid-state fermentation. Bioactive compounds could be improved via solid-state fermentation. Lactiplantibacillus plantarum (MW296876), Saccharomyces cerevisiae (MW296931), and Aspergillus oryzae (MW297015) were purposely selected to ferment IPW at 0, 24, 48, and 72 hr in a two-factor factorial design (treatment × fermentation time). The fermented products were analysed for phytochemical compounds such as total phenolic content (TPC), total flavonoid content (TFC), glycoalkaloid (GLA) content, and antioxidant capacity. The results revealed that the bioactive compounds, except phytic acid, had a significant interaction between treatment and fermentation time. Alpha solanine significantly (p<0.05) decreased while α chaconine increased (p<0.05) with fermentation time across all the treatments except in the control and L. plantarum treatment groups. IPW inoculated with L. plantarum significantly influenced the solubility of GLA compared to other treatment groups. Antioxidant capacity increased (p<0.05) across the fermentation time; at 48 hr of fermentation, L. plantarum had the highest (p<0.05) antioxidant capacity than S. cerevisiae and A. oryzae. Among the three inocula, L. plantarum (MW296876) consistently increased TPC, antioxidant activity, and solubility of both GLA and tannin.

  • Abdul Rahman, N., Abd Halim, M. R., Mahawi, N., Hasnudin, H., Al-Obaidi, J. R., & Abdullah, N. (2017). Determination of the use of Lactobacillus plantarum and Propionibacterium freudenreichii application on fermentation profile and chemical composition of corn silage. BioMed Research International, 2017, 2038062. https://doi.org/10.1155/2017/2038062

  • Adeyemo, S. M., & Onilude, A. A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Nigerian Food Journal, 31(2), 84–90. https://doi.org/10.1016/S0189-7241(15)30080-1

  • Ah-Hen, K., Fuenzalida, C., Hess, S., Contreras, A., Vega-Gálvez, A., & Lemus-Mondaca, R. (2012). Antioxidant capacity and total phenolic compounds of twelve selected potato landrace clones grown in southern Chile. Chilean Journal of Agricultural Research, 72(1), 3–9. https://doi.org/10.4067/s0718-58392012000100001

  • Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., & Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: An overview. International Journal of Molecular Sciences, 17(6), 835. https://doi.org/10.3390/ijms17060835

  • Aruna, T. E., Aworh, O. C., Raji, A. O., & Olagunju, A. I. (2017). Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Annals of Agricultural Sciences, 62(1), 33-37. https://doi.org/10.1016/j.aoas.2017.01.002

  • Cebulak, T., Krochmal-Marczak, B., Stryjecka, M., Krzysztofik, B., Sawicka, B., Danilčenko, H., & Jarienè, E. (2022). Phenolic acid content and antioxidant properties of edible potato (Solanum tuberosum L.) with various tuber flesh colours. Foods, 12(1), 100. https://doi.org/10.3390/foods12010100

  • Cominelli, E., Pilu, R., & Sparvoli, F. (2020). Phytic acid and transporters: What can we learn from low phytic acid mutants? Plants, 9(1), 69. https://doi.org/10.3390/plants9010069

  • Das, A. K., Islam, M. N., Faruk, M. O., Ashaduzzaman, M., & Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58–70. https://doi.org/10.1016/j.sajb.2020.08.008

  • Department of Agriculture. (2022). Statistik tanaman sayur-sayuran dan tanaman kontan [Vegetable and cash crop statistic]. DOA. https://www.doa.gov.my/doa/resources/aktiviti_sumber/sumber_awam/maklumat_pertanian/perangkaan_tanaman/statistik_tanaman_sayur_tanaman_kontan_2022.pdf

  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42. https://doi.org/10.2307/3001478

  • Food and Agriculture Organization of the United Nations. (2023). Crops and livestock products. FAO. https://www.fao.org/faostat/en/#data/QCL/visualize

  • Friedman, M., Kozukue, N., Kim, H.-J., Choi, S.-H., & Mizuno, M. (2017). Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. Journal of Food Composition and Analysis, 62, 69–75. https://doi.org/10.1016/j.jfca.2017.04.019

  • Frond, A. D., Iuhas, C. I., Stirbu, I., Leopold, L., Socaci, S., Andreea, S., Ayvaz, H., Andreea, S., Mihai, S., Diaconeasa, Z., & Carmen, S. (2019). Phytochemical characterization of five edible purple-reddish vegetables: Anthocyanins, flavonoids, and phenolic acid derivatives. Molecules, 24(8), 1536. https://doi.org/10.3390/molecules24081536

  • Haile, M., & Kang, W. H. (2019). Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts. Fermentation, 5(1), 29. https://doi.org/10.3390/fermentation5010029

  • Hawashi, M., Altway, A., Widjaja, T., & Gunawan, S. (2019). Optimization of process conditions for tannin content reduction in cassava leaves during solid state fermentation using Saccharomyces cerevisiae. Heliyon, 5(8), e02298. https://doi.org/10.1016/j.heliyon.2019.e02298

  • Hellmann, H., Goyer, A., & Navarre, D. A. (2021). Antioxidants in potatoes: A functional view on one of the major food crops worldwide. Molecules, 26(9), 2446. https://doi.org/10.3390/molecules26092446

  • Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346–356. https://doi.org/10.1016/j.foodchem.2014.03.112

  • Ji, X., Rivers, L., Zielinski, Z., Xu, M., MacDougall, E., Stephen, J., Zhang, S., Wang, Y., Chapman, R. G., Keddy, P., Robertson, G. S., Kirby, C. W., Embleton, J., Worrall, K., Murphy, A., De Koeyer, D., Tai, H., Yu, L., Charter, E., & Zhang, J. (2012). Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chemistry, 133(4), 1177–1187. https://doi.org/10.1016/j.foodchem.2011.08.065

  • Joshi, A., Kaundal, B., Raigond, P., Singh, B., Sethi, S., Bhowmik, A., & Kumar, R. (2021). Low-volume procedure to determine phytate and ascorbic acid in potatoes: Standardization and analysis of Indian cultivars. Journal of Food Composition and Analysis, 102, 103998. https://doi.org/10.1016/j.jfca.2021.103998

  • Juanjuan, Z., Wei, W., Aiqiong, Q., Samten., & Tenzin-tarchen., & Bin, L. (2019). Effects of moisture content and additives on the fermentation quality and degradation of glycoalkaloids in potato (Solanum tuberosum) vine silage in Tibet. American Journal of Agriculture and Forestry, 7(1), 1-9. https://doi.org/10.11648/j.ajaf.20190701.11

  • Kareem, K. A., Ojokoh, A., & Baba, J. (2017). The effects of fermentation on the nutritional and anti-nutritional constituents of Irish potato peels. Annals. Food Science and Technology, 18(4), 680–685.

  • Kiczorowski, P., Kiczorowska, B., Samolińska, W., Szmigielski, M., & Winiarska-Mieczan, A. (2022). Effect of fermentation of chosen vegetables on the nutrient, mineral, and bio component profile in human and animal nutrition. Scientific Reports, 12,13422. https://doi.org/10.1038/s41598-022-17782-z

  • Kim, J., Soh, S. Y., Bae, H., & Nam, S.-Y. (2019). Antioxidant and phenolic contents in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Applied Biological Chemistry, 62, 17. https://doi.org/10.1186/s13765-019-0422-8

  • Kondamudi, N., Smith, J. K., & McDougal, O. M. (2017). Determination of glycoalkaloids in potatoes and potato products by microwave assisted extraction. American Journal of Potato Research, 94, 153–159. https://doi.org/10.1007/s12230-016-9558-9

  • Lachman, J., Hamouz, K., Orsák, M., & Kotíková, Z. (2016). Carotenoids in potato – A short overview. Plant, Soil and Environment, 62(10), 474–481.

  • Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., Ahmad, F., Babazadeh, D., FangFang, X., Modarresi-Ghazani, F., WenHua, L., & XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine and Pharmacotherapy, 97, 67–74. https://doi.org/10.1016/J.BIOPHA.2017.10.064

  • Nazarni, R., Purnama, D., Umar, S., & Eni, H. (2016). The effect of fermentation on total phenolic, flavonoid and tannin content and its relation to antibacterial activity in jaruk tigarun (Crataeva nurvala, Buch HAM). International Food Research Journal, 23(1), 309–315.

  • Ncobela, C. N., Kanengoni, A. T., Hlatini, V. A., Thomas, R. S., & Chimonyo, M. (2017). A review of the utility of potato by-products as a feed resource for smallholder pig production. Animal Feed Science and Technology, 227, 107–117. https://doi.org/10.1016/J.ANIFEEDSCI.2017.02.008

  • Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J.-B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science and Nutrition, 6(8), 2446–2458. https://doi.org/10.1002/fsn3.846

  • Ok, F. Z., & Şanlı, A. (2022). Potato glykoalkaloids: Properties and biological activities. Atatürk University Journal of Agricultural Faculty, 53(1), 88-96.

  • Omayio, D. G., Abong, G. O., & Okoth, M. W. (2016). A review of occurrence of glycoalkaloids in potato and potato products. Current Research in Nutrition and Food Science Journal, 4(3), 195–202. https://doi.org/10.12944/CRNFSJ.4.3.05

  • Ortiz, D., Nkhata, S., Buechler, A., Rocheford, T., & Ferruzzi, M. G. (2018). Nutritional changes during biofortified maize fermentation (steeping) for ogi production. The FASEB Journal, 31(S1), 32.4. https://doi.org/10.1096/FASEBJ.31.1_supplement.32.4

  • Paradhipta, D. H. V., Lee, H.-J., Joo, Y.-H., Lee, S.-S., Kang, D.-H., Chung, K.-Y., & Kim, S.-C. (2020). Effects of potato by-products containing glycoalkaloid on rumen fermentation characteristics. Journal of Agriculture and Life Science, 54(4), 69–74. https://doi.org/10.14397/jals.2020.54.4.69

  • Peluso, I. (2019). Dietary antioxidants: Micronutrients and antinutrients in physiology and pathology. Antioxidants, 8(12), 642. https://doi.org/10.3390/ANTIOX8120642

  • Ramin, M., Yaakub, H., Alimon, A. R., & Jelan, Z. A. (2011). Effects of fungal treatment on the in vitro degradation of cassava. Livestock Research for Rural Development, 23(7), 1–6.

  • Rodríguez-Martínez, B., Gullón, B., & Yáñez, R. (2021). Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants, 10(10), 1630. https://doi.org/10.3390/antiox10101630

  • Ru, W., Pang, Y., Gan, Y., Liu, Q., & Bao, J. (2019). Phenolic compounds and antioxidant activities of potato cultivars with white, yellow, red and purple flesh. Antioxidants, 8(10), 419. https://doi.org/10.3390/antiox8100419

  • SAS. (2011). SAS/STAT 9.3 User’s guide. SAS Institute Inc.

  • Sepelev, I., & Galoburda, R. (2015). Industrial potato peel waste application in food production: A review. Research for Rural Development, 1, 130–136.

  • Sulaiman, C. T., & Balachandran, I. (2012). Total phenolics and total flavonoids in selected Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 74(3), 258–260. https://doi.org/10.4103/0250-474x.106069

  • Taie, H. A. A., Abd-Alla, H. I., Ali, S. A., & Aly, H. F. (2015). Chemical composition and biological activities of two Solanum tuberosum cultivars grown in Egypt. International Journal of Pharmacy and Pharmaceutical Sciences, 7(6), 311–320.

  • Valcarcel, J., Reilly, K., Gaffney, M., & O’Brien, N. (2015). Total carotenoids and L-ascorbic acid content in 60 varieties of potato (Solanum tuberosum L.) grown in Ireland. European Potato Journal, 58, 29–41. https://doi.org/10.1007/s11540-014-9270-4

  • Valiñas, M. A., Lanteri, M. L., Have, A. T., & Andreu, A. B. (2017). Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chemistry, 229, 837–846. https://doi.org/10.1016/j.foodchem.2017.02.150

  • Wu, J., Wang, L., Du, X., Sun, Q., Wang, Y., Li, M., Zang, W., Liu, K., & Zhao, G. (2018). α-solanine enhances the chemosensitivity of esophageal cancer cells by inducing microRNA-138 expression. Oncology Reports, 39(3), 1163–1172. https://doi.org/10.3892/OR.2018.6187

  • Yılmaz, A., Yıldız, S., Kılıç, C., & Can, Z. (2017). Total phenolics, flavonoids, tannin contents and antioxidant properties of Pleurotus ostreatus cultivated on different wastes and sawdust. International Journal of Secondary Metabolite, 4(1), 1–9. https://doi.org/10.21448/ijsm.252052

  • Zhao, D., & Shah, N. P. (2014). Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. LWT - Food Science and Technology, 58(2), 454–462. https://doi.org/10.1016/j.lwt.2014.03.029

  • Zong, C., Xiao, Y., Shao, T., Chiou, J. A., Wu, A., Huang, Z., Chen, C., Jiang, W., Zhu, J., Dong, Z., Liu, Q., & Li, M. (2023). Alfalfa as a vegetable source of β-carotene: The change mechanism of β-carotene during fermentation, Food Research International, 172, 113104. https://doi.org/10.1016/j.foodres.2023.113104